EVS27 - Barcelona, 19. Nov. 2013

Development and Series Application of a Vehicle Drivetrain Observer Used in Hybrid and Electric Vehicles

Dr. Gunther Götting, Markus Kretschmer

EVS27 - Barcelona, 19. Nov. 2013

Agenda

- Basics
- → How the Rotor Angle Affects Torque Control of PMSM
- The Active Damping Control
- Design of a Vehicle Drivetrain Observer
- → Identification of Observer Parameters
- → Results and Conclusion

EVS27 - Barcelona Basics

Modeling the Electric Axle Drivetrain

- Axle Split Hybrid / Electric Vehicle applications
- Electric machine installed inside final drive unit housing

Drivetrain might be exposed to severe oscillations.

Influence of Rotor Angle on PMSM Torque Control

- Field oriented control (FOC)
- $\rightarrow T_{\rm em} = f(I_{\rm d}, I_{\rm q})$
- → Angle error (here: ±5°el.):
 - Wrong current phasor
 - Torque error
 - Voltage error (disturbance)
- → OP1 (on MTPA, at low speed):
 - Torque error: <1%
- → OP2 (field weaken., high speed):
 - Torque error: -7 ... +10%

PMSM: Permanent Magnet Synchronous Machine

Accurate electric machine rotor angle is essential.

Influence of Rotor Angle on PMSM Torque Control

- Field oriented control (FOC)
- $\rightarrow T_{\rm em} = f(I_{\rm d}, I_{\rm q})$
- → Angle error (here: ±5°el.):
 - Wrong current phasor
 - Torque error
 - Voltage error (disturbance)
- → OP1 (on MTPA, at low speed):
 - Torque error: <1%
- → OP2 (field weaken., high speed):
 - Torque error: -7 ... +10%

PMSM: Permanent Magnet Synchronous Machine

Accurate electric machine rotor angle is essential.

Influence of Rotor Angle on PMSM Torque Control

- Field oriented control (FOC)
- $\rightarrow T_{\rm em} = f(I_{\rm d}, I_{\rm q})$
- → Angle error (here: ±5°el.):
 - Wrong current phasor
 - Torque error
 - Voltage error (disturbance)
- → OP1 (on MTPA, at low speed):
 - Torque error: <1%
- → OP2 (field weaken., high speed):
 - Torque error: -7 ... +10%

PMSM: Permanent Magnet Synchronous Machine

Accurate electric machine rotor angle is essential.

Torque Control Loop, with Observer

FOC: Field Oriented Control ADC: Active Damping Control

Torque Control Loop, with Observer

Gasoline Systems

ADC: Active Damping Control

Torque Control Loop, with Observer

EVS27 - Barcelona Active Damping Control

Active Damping Control (ADC)

- Active damping torque is needed to compensate drivetrain oscillations:
 - $T_{\rm Dmp} = k_{\rm Dmp} \cdot \omega_{\rm Osc}$
- Oscillation speed:
 - $\omega_{\rm Osc}$ = $\omega_{\rm Em}$ $\omega_{\rm Wheel}$
- \rightarrow E-Machine speed $\omega_{\rm Fm}$:
 - is computed using rotor angle signal
- \rightarrow Wheel speed ω_{Wheel} :
 - usually not available, especially at low speeds

Oscillation speed $\omega_{\rm Osc}$ needs to be estimated.

EVS27 – Barcelona Drivetrain Observer

Design of a Vehicle Drivetrain Observer

- Drivetrain is modeled as a two-mass-system
- → Luenberger structure with feedback of measurement signal via L vector

Observer estimates internal system states, e.g. $\omega_{\rm Osc}$.

EVS27 – Barcelona Parameter Identification

Identification of Observer Parameters

- Perform Vehicle tests, e.g. with torque step
- Use measurement results of EM-torque and -speed as input for automated calibration tool

Standalone Tool to Identify and Calibrate Drivetrain Observer Parameters.

EVS27 – Barcelona Measurement Results

Improvement of Rotor Angle Signal Quality

- → High-frequency error of rotor angle signal leads to
 - voltage errors (disturbances)
 - increased current ripple

Observer improves rotor angle signal and reduces current ripple.

EVS27 - Barcelona Measurement Results

Test Results: Series Axle Split Hybrid Vehicle

ADC with observer eliminates drivetrain oscillations.

EVS27 - Barcelona Conclusions

Conclusions

- Accurate FOC needs a high quality rotor angle signal.
- Robust ADC needs the oscillation speed of drivetrain.
- Drivetrain observer modeled as two mass system is vital for
 - improving rotor angle for FOC and
 - estimating oscillation speed for ADC
- → Standalone Calibration-Tool:
 - simple and proper identification of observer parameters
 - in use for several hybrid and electric vehicle series applications

Thank you for your attention!

