EVS27 Barcelona, Spain, November 17-20, 2013

Smart Park in Okinawa Prefectural Peace Memorial Park

Atsushi Mizukoshi

PUES Corporation, 12-73 Suzaki, Uruma,
Okinawa 904-2234, Japan
mizukoshi.atsushi@pues.co.jp

Jo Ushijima

PUES Corporation, 12-73 Suzaki, Uruma,
Okinawa 904-2234, Japan
ushijima.jo@pues.co.jp

Fumiaki Tsuji

PUES Corporation, 12-73 Suzaki, Uruma,
Okinawa 904-2234, Japan
tsuji.fumiaki@pues.co.jp

Takahisa Saito

PUES Corporation, 12-73 Suzaki, Uruma,
Okinawa 904-2234, Japan
saito.takahisa@pues.co.jp

Yuzuru Fukumura

PUES Corporation, 12-73 Suzaki, Uruma,
Okinawa 904-2234, Japan
Fukumura.yuzuru@pues.co.jp

Abstract

With the aim to keep natural environments of Okinawa in good condition and plan attractive improvement of the Okinawa sightseeing with promote environmental measures in the tourism industry which is a key industry in Okinawa , as a part of "General ecological promotion business of the sightseeing-related institution" , we developed a system of electric buses and chargers powered by Solar Photovoltaic , in Okinawa Prefectural Peace Memorial Park located southern part in Okinawa Island.

1 Introduction

Okinawa Prefectural Peace Memorial Park is located in the Mabuni Hill area of Itoman city; the southern part of the island where the final battle in Okinawa took place during the Second

World War. The park enjoys a pleasant view of the rugged and beautiful coastline on its southeastern border.

The former Ryukyu Government originally initiated the creation of a park on the site, and following Okinawa's reversion to Japan in 1972,

full-scale construction of a public park in the area was initiated.

At this park, wartime photographs and objects are displayed at the Peace Memorial Museum, and the names of those who perished during the battle of Okinawa are inscribed on the "Cornerstone of Peace" monument. The Peace Prayer Memorial Statue that prays for the souls of those killed in wars and for everlasting world peace can also be found on the site, and the National War Dead Peace Mausoleum, along with 50 monuments from other prefectures and organizations are all located on Mabuni Hill in the southern region of the park.

Many people visit the park's sacred grounds, such as tourists from Japan and abroad, groups of those related to the war dead, and students on school excursions, making the Peace Memorial Park a key tourist site. On holidays, families flock to the area to play ball games, have picnics and enjoy various other recreational activities on the open grass.

They at the Okinawa Peace Memorial Park are endeavoring to maintain a park that can satisfy the various needs of the increasing number of people who come to visit, giving their guests a fulfilling experience, while simultaneously offering their prayers for eternal world peace and promoting the park's role in transmitting the message of peace to the world.

Figure 1: Okinawa Prefectural Peace Memorial Park

This park has vast grounds and the visitors used to move around in the park on foot or by diesel microbus.

Figure 2: Conventional Loop-Line Bus in the Park

However, the park had faced with decrepit buses and the emission gas issue, which is disputed as one of recent environmental concerns; it was urgent to introduce new transport.

That's why solar-powered electric buses were planed and produced aiming for an energy shift from fossil fuels to natural energy.

Moreover, the "smart park", in which renewable natural energy could be efficiently used, was presented. Sunlight is used as source of energy for more than loop-line buses.

2 Trial calculation

The annual energy consumption of EVs is estimated approx. 3MWh for operating the loop-line buses in the park and approx. 7MWh for charging the visitors' private vehicles. To cover the consumption by renewable natural energy, it was designed to generate 10 MWh of photovoltaic energy in the park annually.

Figure 3: Energy Generation and Consumption

3 Development of "Smart Park"

Figure 4 shows the schematic block diagram for the "smart park".

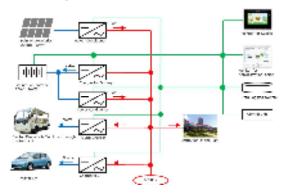


Figure 4: Smart Park Schematic

The specifications of units/systems constituting "smart park" are shown in Table 1-5.

Table1:Specifications of PV system

Tubic 1.bpccimeutic			
Generation System	CIGS Solar		
	Photovoltaic		
Max Power	10kW		
Operational Voltage at	433.8V		
Max Power			
Operational Current at	23.4A		
Max Power			
Output	AC200V 3 φ		
Control	with MPPT		
Dimensions	10.6m x 9.5m		
Operational	-20∼40°C		
Temperature			
Setting Place	Roof of Carport		
Quantities	1		

Table2:Specifications of Battery system

Input	AC200V 3 φ 10kW			
Output	AC200V 3 φ 10kW			
Voltage	DC360V			
Capacity	24kWh			
Control Signal	CAN			
Safety	Over Current			
	Over Voltage			
	Temperature			
Setting Place	Carport			
Quantities	1			

Table3:Specifications of Electric Bus

Capacity	15persons		
Max Speed	30km/h		
Driving Range	20km		
Climbing ability	28%		
Braking Distance	5m		
Min Rotating Radius	5.7m		
Min Ground Clearance	150mm		
Charging Time	0.5hrs(Quick		
	Charge)		
	3.0hrs		
Motor Power	6kW		
Battery	Li-ion 72V/6kWh		
Dimensions	4960(L) x 1430(W)		
	x 2000(H)mm		
Quantities	2		

Table4:Specifications of Quick Charger

Input	AC200V 3 φ 49kW		
Max Output Voltage	DC500V		
Max Output Current	DC125A		
Connector	JEVS G105-1993		
Dimensions	1840 x 380 x 600		
Operating Temperature	-10∼40°C		
Setting Place	Carport		
Quantities	1		
Charging Protocol	CHAdeMO		

Table5:Specifications of Charger

Input	AC200V 1 φ 4kW		
Output Voltage	AC200V		
Max Output Current	AC20A		
Connector	IEC 61851-1 mode3		
Dimensions	1500 x 230 x 630		
Operating Temperature	-10∼40°C		
Setting Place	Parking for Visitor		
Quantities	2		

PUES' original Li-ion battery systems were applied in this smart park project, such as for the power battery for the park round buses and the stationary energy storage in the park. Photovoltaic power generating systems were installed also in the buses, which could make efficient use of solar power while moving.

Figure5: Loading of a Solar Panel

Furthermore, to achieve the long-term operation of the smart park, salt pollution control measures were taken in the parts selection and the system construction.

4 Progress Report of Smart Park

The smart park started operation and service on April, 2013. Table 6 shows the electricity balance between generation and consumption for the first two months.

Table6: Progress situation of Smart Park

	Electric Energy [KWh]			
	Daily	Monthly Average		Sum
	Average	April	May	total
1: Photovoltaic Energy Generation	42.2	1,117	1,417	2,534
2: Energy Consumptio n by the Loop-Line Bus	-19.2	-576	-576	-1,152
3: Charging Energy Visitors' Private EVs		-9.5	-5.7	-15.2
1 – (2 + 3)	22.8	531	835	1,366.8

5 Conclusions

Our smart park project showed the effectiveness of natural energy; the photovoltaic panels in the park could generate enough electricity to provide power to operate the loop-line buses and to charge the visitors' private EVs. While working on modifications and improvements through a whole year operation, we hope that this smart park concept leads to further conservation of the natural environment and further increase of attractions of sightseeing in Okinawa.

Of course, the smart park concept can be applied to any other cases where green-power generating facilities, stationary storages and movable bodies are able to coexist. For example, in recent years, many Mega-Watt-class solar power plants have been globally constructed, and we expect that this study suggests a possibility to be applied also to such power plants.

Acknowledgments

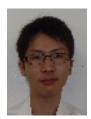
The author wishes to express his gratitude to the Okinawa Prefecture and the Okinawa Peace Prayer Foundation with which we've executed this project, companies in Okinawa which carried out the construction work in the park, and local high school students who did the graphic design work for the round buses in the park.

Figure6: Electric bus in Okinawa Prefectural
Peace Memorial Park

References

[1] Okinawa Prefectural Peace Memorial Park, http://kouen.heiwa-irei-okinawa.jp

Authors


Atsushi Mizukoshi , Deputy General Manager, PUES Corporation

Jo Ushijima , Deputy Manager, Manufacturing Engineering, PUES Corporation

Fumiaki Tsuji , Assistant Manager, Manufacturing Engineering, PUES Corporation

Takahisa Saito , Manufacturing Engineering, PUES Corporation

Yuzuru Fukumura , Manufacturing Engineering, PUES Corporation