
EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  1

EVS27 
Barcelona, Spain, November 17-20, 2013 

The Effect of the Operating Point Choice On Fuel 
Economy in Series Hybrids 

Peter H. Bauer1, Elena Pérez-Bernabeu2 
1Department of Electrical Engineering. University of Notre Dame. Notre Dame, IN,USA. peter.h.bauer.2@nd.edu 
2Department of Applied Statistics, Operations Research and Quality. Universitat Politècnica de València. Spain.  

Plaza Ferrándiz y Carbonell, s/n. Office F1D7. 03802 Alcoi. Spain. elenapb@eio.upv.es  

Abstract 

This paper investigates the effect of the choice of operating points for series hybrid configurations in power 

generation, especially for the case of heavy duty hybrid drive applications. Using the genetic algorithm to 

obtain the optimal operating points, we will show that the amount of fuel savings that can be achieved is 

substantial. Fuel mass is minimized, if one of the operating points is at the bsfc minimum and the other is at 

the low power end of the power range. The use of operating points above the bsfc minimum always results 

in bad fuel efficiency, if the average power corresponds to power that is below the bsfc minimum. 
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1 Introduction 
The question of optimally choosing operating 
points in series hybrid power generating 
equipment is a key to maximizing fuel efficiency 
[1]. Using a simple analytically tractable brake 
specific fuel consumption curve, one can 
investigate all possible choices of operating 
points that lead to optimal or close to optimal 
results. However, often what is needed is to find 
the optimum for bsfc curves that do not have a 
simple mathematical representation. 
If energy storage capacity could be made 
available at no or low cost, one could run the ICE 
at an operating point that corresponds to the 
average required power, assumed this power is 
known a priori. In this case the storage device 
would handle the short term mismatch of power. 
The disadvantage of such a scheme is not only 
the required large storage capacity, but also the 
fact that this average power is likely to not 
correspond to the lowest achievable bsfc. 
Therefore the question of finding the optimal 
operating points for fuel consumption 

minimization arises. In our work we assume that 
cycling the engine between the optimal bsfc power 
and switching the engine off  [3] is not a viable 
option as often is the case in large engines [1,2]. 
In this paper we therefore investigate the case of 
two and three different operating points for 
optimal overall fuel efficiency. The method 
employed uses the genetic algorithm to find the 
best set of operating points. This method can be 
applied even for bsfc curves that are analytically 
difficult to describe. Engine transients and their 
effect on fuel consumption are neglected and 
hence the provided study is applicable only for 
long term operation and a large storage capacity. 
Furthermore it is assumed that regardless of the 
choice of operating points, the series hybrid 
electric drive-train attached to the ICE-generator 
unit remains the same in all cases with efficiencies 
that do not depend on the operating points. 
Therefore this is not a comparison that addresses 
the problem of “if hybridization should be done”, 
but it rather assumes that the decision of 
hybridization has been made. After that it is only a 
question of determining the correct operating 



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  2

point(s). This paper will not only show where the 
optimal two operating points are but also how 
much fuel can be saved. 

2 Results 
Tables 1 and 2 show the fuel consumption of a 
typical large hybrid drive system for the case of 
two and three operating points respectively. In 
the tables 1 and 2 all scenarios produce the same 
average power over the total run time, but yield 
totally different fuel consumption results as can 
be seen in the last entry of the tables.   In both 
cases, the bsfc minimum occurs at 200KW, but 
in the two OP case the average power is 200KW 
while in the three OP case the average is 100KW, 
i.e. significantly below the optimal power point. 
The analytical form for the bsfc curve used in 
tables 1 and 2 is given by: 
 
Bsfc(P) =190 + (0,01*(P-200)2)  (1) 
 

Table 1: Combinations of two operating points for an 
average power of 200 KW and the associated fuel 

mass consumption. 

 
 

Table 2: Combinations of three operating points for an 
average power of 100 KW and the associated fuel 

mass consumption. 

 
 
What the above two tables indicate is that one pays 
a high penalty in normalized fuel consumption if 
one of the OP is far above the optimal associated 
power. Also, it can be seen that by choosing 
optimal OPs, fuel savings are typically around 30-
35%. The assumed quadratic bsfc dependency is 
often a good approximation of the bsfc curve for a 
fairly large power interval around the bsfc 
minimum. Also note that the best results in fuel 
efficiency are obtained if at least one of the two 
OPs is near the bsfc minimum. In table 1 average 
power is twice as large as in table 2, and if one 
compares the best cases in both tables (rightmost 
columns) the fuel consumption in the 200KW case 
is a little less than twice the fuel consumption for 
the 100KW case. This is explained by the fact that 
the average and bsfc optimal power levels coincide 
in table 1, but not in table 2 for the 100KW case, 
where one is forced to operate the engine away 
from the optimal bsfc point. 
 
Now, we use the actual bsfc curve of a 8.7liter V8 
Cummins Diesel genset given in [5] and given in 
Figure 1 below.  The data for power and bsfc is 
available only in the range between 80KW and 
240KW. And therefore this is the range that we 
consider in our study. In this search for the optimal 
operating points the average power was chosen to 
be 140 KW. The results are similar as in the 
previous two tables: fuel consumption is 

Power #1 128 277 259 158
Power #2 278,00 146,49 149,74 235,78

% time Power #1 0,52 0,41 0,46 0,46
% time Power #2 0,48 0,59 0,54 0,54

Average Power 200 200 200 200

Fuel Mass 49568,96 47208,19 44189,78 40911,83

Power #1 127 99 163 125
Power #2 219,41 212,48 208,12 203,95

% time Power #1 0,21 0,11 0,18 0,05
% time Power #2 0,79 0,89 0,82 0,95

Average Power 200 200 200 200

Fuel Mass 40073,93 39405,58 38514,24 38381,75

Power #1 227 249 204
Power #2 195,97 199,00 192,24

% time Power #1 0,13 0,02 0,66
% time Power #2 0,87 0,98 0,34

Average Power 200 200 200

Fuel Mass 38242,88 38121,52 38060,95

Power #1 188 132 157 64
Power #2 200,00 200,00 200,00 200,00
Power #3 91,99 95,00 94,99 90,97

% time Power #1 0,02 0,05 0,03 0,11
% time Power #2 0,03 0,03 0,03 0,11
% time Power #3 0,95 0,92 0,94 0,78,
Average Power 100 100 100 100

Fuel Mass 28956,37 28941,03 28933,31 28736,84

Power #1 54 75 151 167
Power #2 200,00 200,00 200,00 200,00
Power #3 99,00 75,00 1,96 1,98

% time Power #1 0,09 0,2 0,02 0,03
% time Power #2 0,05 0,2 0,48 0,47
% time Power #3 0,86 0,6 0,5 0,5

Average Power 100 100 100 100

Fuel Mass 28721,09 28375,00 19456,86 19442,76

Power #1 220 210 195 188
Power #2 200,00 200,00 200,00 200,00
Power #3 1,96 1,96 2,00 1,92

% time Power #1 0,05 0,1 0,2 0,08
% time Power #2 0,44 0,39 0,3 0,42
% time Power #3 0,51 0,51 0,5 0,5

Average Power 100 100 100 100

Fuel Mass 19436,20 19413,20 19401,79 19398,32

Power #1 191 198 181
Power #2 200,00 200,00 200,00
Power #3 1,80 1,68 1,52

% time Power #1 0,1 0,42 0,04
% time Power #2 0,4 0,08 0,46
% time Power #3 0,5 0,5 0,5

Average Power 100 100 100

Fuel Mass 19369,02 19333,71 19325,53
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