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Abstract 

Objectives for CO2 reduction as well as a more and more expensive gasoline have given a new breath to 

the plug-in vehicles (electric or hybrid). From an energetic point of view, the issue is then transferred from 

oil industry to the electrical power system sector. With this possible new demand, the question is then: will 

the power systems be able to accept the demand of several millions of vehicles, and how the power system 

control should be modified? Plug-in vehicles will be charge from the low voltage distribution network. 

Then their impact on the network is a critical issue to ensure the system security. The small storage devices 

brought by vehicles could be more a real opportunity than a constraint for distribution networks as vehicles 

could help reducing overload, voltage fluctuations observed with renewable sources. In this paper we 

present how plug-in vehicles charges can be managed to reduce the constraints on distribution networks. 

We propose controlled charging strategies to charge EVs when photovoltaic or wind generation feed power 

into the grid.  Financial issues will also be discussed about sharing benefits between actors. 
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1 Introduction 
The power system security depends of the 
balancing between generation and demand at 
each moment. A constant frequency is the 
indicator of the balancing. Beyond the real-time 
balancing requirement managed by the 
transmission system operators, it must be kept in 
mind that there are also voltage and congestion 
constraints that can affect the distribution 
networks – usually radial with a radial topology.  
Distribution networks are at the center of the 
smart grids with several evolutions currently in 
progress: integration of distributed energy 
resources – wind, photovoltaic, combined heat 
power (CHP and µ-CHP) – and tomorrow new 

loads such as plug-in vehicles. With all these 
innovations the distribution operators (DSO) need 
to update their technical solutions to manage their 
networks, using more and more information and 
communication technologies to handle efficiently 
renewables and EV fleets.  
Traditionally distribution networks that were radial 
with passive loads and power flows from the 
substation to the loads, are now subjected to 
bidirectional power flows that may impact the 
voltage profile, the protection plan, or generate 
congestions 
Plug-in vehicles and renewables may have a real 
impact with possible peak power if all EV drivers 
plug their car to begin the charge immediately 
even if only a small charge is needed. As some 
distribution transformers may already be closed to 
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overloading, simultaneous EV connection could 
be a real problem for the transformers lifespan or 
management profile. Conversely with their 
batteries, plug-in vehicles can be seen as small 
storage systems distributed along the system. As 
the lack of storage devices is a weak point of the 
power system, these vehicles could be an 
opportunity that has been analyzed for several 
years [1-4] to help absorption of renewable 
decentralized generations.  
But as time seems to be arrived for plug-in 
vehicles roll-out, many issues will have to be 
solved in the coming years. It worth noticing that 
the impact of plug-in vehicles will also depend 
on the Electric Vehicle Supply Equipment 
(EVSE) power, system which can be from 3 kW 
(single phase 230V and 16A) to 43 kW (three 
phases 400V and 63A) for AC systems.  
If private EVSE for residential will mainly be 3 
or 67kW (16 A or 32 A switchgear), public 
EVSE could be 11 kW, 22 kW or 43 kW. If we 
consider that in France a typical power for a low 
voltage distribution transformer is 400 – 630 or 
1000 kVA with 100 customers, the simultaneous 
public or private charging decisions can be a real 
problem for the distribution networks. 
 
In this paper, we present how plug-in vehicles 
charges can be managed to reduce the constraints 
on distribution networks subject to renewable 
generation. Our model proposes optimal charging 
strategies to EVs when photovoltaic or wind 
generation feed power into the grid. For 
simplicity reasons, we consider that PV and wind 
technologies have achieved the cost level of grid 
parity [5-8]. This hypothesis means that 
economic analysis would use the hourly French 
market pool prices for energy for PV and for 
wind generations even if in the later, grid parity 
will probably be effective later than in PV. 
The section 2 describes the model used for this 
question, the section 3 presents the strategy for 
EVs charging following the PV or wind 
generation, and the section 4 gives simulation 
results. Financial issues will also be discussed 
about sharing benefits between actors. 

2 Modelling 
This section presents the different parts of the 
model built to analyse the coupling of EV 
charging with distributed renewable generations. 
First, let us precise that our model is grounded on 
the French data for design of the distribution 
electrical system, on French data for car usages 
and on our solar panel in Supélec.  

The distribution network is considered at the 
substation level. Only demand and generation 
connected to the network is taken into account: 
usual French electrical demand, EV demand, PV 
generation and wind generation. Nevertheless, 
neither voltage issues along feeders nor 
cables/lines overload are considered.  

2.1 Distribution network 
In France there are about 2500 substations to link 
the distribution networks (HTA level) to the 
transmission system (63 kV, 90 kV or 225 kV 
level). Considering a peak power of 100 GW, the 
mean peak power is 40 MW per substation, of 
course with a large spread because some 
substations only have a single 20 MVA 
transformer and others have three 36 MVA 
transformers. Regarding to the renewable 
distributed generation, 7500 MW of wind mills 
and 3500 MW of photovoltaic panels are 
connected to the distribution grid. 

2.2 Electricity demand profile 
The daily demand profiles at the substation are 
based on the demand curves published by the 
French TSO. A scale factor (1/2500) is applied to 
convert a daily curve at the substation level. Two 
example of demand profiles are given in Fig. 1.  
 

 

Figure 1: two demand profiles at the substation level 
during a week day. 

2.3 EV fleet 
An EV fleet must be modelled to indicate when 

the EVs are connected to the grid and consequently 
available for charging. We propose a repartition 
function of vehicle trips from [9] taking into 
account only daily trips less than 60km, which 
represents about 80% of actual French trips. 
Moreover, we only consider particular EVs for 
travel between home and work. EV business fleets  
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Figure 2: Frequency and cumulative distribution 
functions for EV daily trips 

are not considered owing to their commercial 
use. For the sake of simplicity, all EVs are 
considered to have a 24kWh battery, and to use a 
3kW (230V-16A) or a 7 kW (230V-32A) plug. 
 
We consider distributions for travel durations, 
with the hypothesis that people stay at work all 
day. Each day is then characterized by four 
instants (t0, …, t3) which correspond to EV 
connection to and disconnection from the grid. In 
the morning, the EV is unplugged (t0) before 
leaving, and the EV is then plugged in (t1) after 
arriving at work. At the end of day, the EV is 
unplugged (t2) before leaving work to return 
home. Finally the EV is plugged in at home (t3). 
Our reference is the instant t1 = 8.30 in the 
morning with a 20min standard deviation and a 
Gaussian distribution. Then t0, t2, and t3 are 
calculated with: 
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∆t10 min and ∆t30 min are stochastic delays (uniform 
distribution) that are introduced to respectively 
consider that the EV is disconnected a couple of 
minutes before leaving (or connected some 
minutes after arriving), and that time is spent in 
the evening for shopping before coming home. 
∆twork is the daily duration spent at work 
(typically nine hours)  

The trip duration is calculated from the mean 
speed that has been supposed to depend on the 
trip length (Table 1), and a uniform distribution 

inside a +/-20% range is considered. Energy 
consumption also depends on the trip length.  

We suppose that small urban trips require more 
energy per km. For a 24 kWh battery automakers 
often give autonomy of 150km. To base our 
calculations on a more realistic usage, autonomy 
between 90 and 120km is considered. A uniform 
distribution (+/-20%) is considered around the 
mean values.  
With this model, the mean time when the EV is 
disconnected to the grid is 1h 35min per day with a 
20min standard deviation. Then, if each EV can be 
connected to an EVSE when it is parked at work, 
the EV is available at least 21h per day. Fig. 3 
represents the probability for EV connection to the 
grid availability (either for charging or frequency 
regulation) during the day. Our model shows a 
probability that drops to less than 50% and 30% 
respectively during morning and evening trips. 
 

Table 1: Trip intervals, mean speed and mean energy 
consumption 

Trip intervals 
(km) 

0-5 5-15 15-25 25-40 40-55 55-60 

Speed (km/h) +/- 
20% 20 30 40 50 60 70 

Consumption 
(km for 24kWh 

battery) 
90 90 90 105 120 120 

 

 
Figure 3: Probability for an EV to be connected to the 

grid during the day 

2.4 Photovoltaic generation 
The photovoltaic generation profile is based on 
measurements (time step 30 seconds done with a 
single PV panel located on the roof of Supelec (25 
km south of Paris). We also use data about the 
number of sunny hours per month in the area [10]. 
As the weather is considered sunny if the direct 
sun power is greater than 120W/m², and 
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considering the generation characteristic of a 
SunPower module [11], the 120 W/m² threshold 
corresponds to a 15 W/m² electrical generation. 
Due to some data collection shortcomings during 
the 2010-2012 years, we have decided to manage 
our rough solar data by creating a PV generation 
profile for all days of a normalized year. The 
method is described in Fig. 4. For each month 
there is a credit of sunny hours (H0). Then a first 
sunny day is randomly chosen, and the associated 
PV profile is also randomly chosen amongst the 
registered profiles of this month. The chosen 
profile brings a certain amount of sunny hours. 
The remaining number of sunny hours to 
complete is H1 = H0-h1. If H1 is positive, another 
sunny day is randomly chosen. The process is 
gone on until the sunny hours credit is over. 
 
As the total installed power in France is 3500 
MW (peak), and considering a 150W peak per 
square meter, the PV panel surface is around 
10000 m² per HV/MV substation. Of course 
there are disparities between geographical areas, 
with more PV panels in the south-east, and less 
in the north. 
Finally, this model has been used to calculate the 
load factor of the PV panels. A 10% value is 
found which is in agreement with usual values in 
France. 
 
 

 

Figure 4: flow chart to define the monthly PV profiles 

 
Figure 5: Example of two photovoltaic profiles (W/m²), 

for one day of April and one day of July. 

2.5 Wind generation 
The wind generation profile is based on a one year 
wind data measured in the north of France (with a 
30 minutes time step), and on a windmill steady-
state characteristics (cut-in, rated and cut-off wind 
speeds): vcut-in = 3.5 m/s, vrated = 13 m/s and vcut-off 
= 25 m/s.  
The frequency function and cumulative 
distribution function for the wind speed are given 
in Fig. 6. For each day, we randomly choose a 24h 
continuous wind sequence and the electric power 
is calculated from the power-wind curve. 
 

 
Figure 6: frequency function and cumulative distribution 
function for the wind speed data used in the simulations. 

3 Strategies for EV charging 
The model presented in the section 2 is used to test 
various EV charging strategies. In the first strategy 
EVs are only charged during the night from 1 am 
to reduce the risk of power overload in the 
substation. The second strategy proposes to charge 
EV when PV panels generate electricity.  
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In all cases, we consider week days with trips 
between home and work. The battery energy 
level is given by its state-of-charge (SOC). It is 
known that battery charging at constant current 
(maximum power) is limited to a SOC less than 
90 or 80%. Beyond this limit the battery is 
charging at constant voltage, thus charging 
power is decreasing. As we have not introduced a 
model of the constant voltage charging, the SOC 
will be limited to 90%, and the maximum 
charging power will be equal to the EVSE power 
(3 or 7 kW). 
 
The three key instants are t0, t1, t2 and t3 (see 
definition in section 2.3). The battery targeted 
SOC at t0 is called SOC_init_am, and it is called 
SOC_init_pm at t2. 

3.1 Non controlled charging 
In this strategy EVs are mainly charged at rated 
power during the night after 1 pm, and they can 
be charged during the day if SOC(t1) is less than 
the targeted SOC_init_pm. In that case EVs are 
charged immediately after the connection at 
work.  

3.2 Synchronisation with PV 
generation 

For this strategy, we consider an aggregator 
managing a fleet of private EV that are connected 
to the grid at work time when PV is possibly 
generating. The aim of the the aggregator is to 
maximize the green charging of EV. In order to 
manage this goal, the aggregator has to forecast 
the PV generation and to send a charging profile 
to each EV. The profile is built as following: 
1) PV generation forecast PPV in the area of the 

distribution network is required. In the 
present study the forecast curve is a mean 
profile with a one-hour time step based on 
the measured PV curve. 

2) PV profile available for each EV, PPV_EV  is 
then given by equation (2). 

 
)2(/

_ EVN
PV

P
EVPV

P =  

 
The PV profile available is sent to each EV and 
is used by the BMS (battery management 
system): 
3) The BMS updates the profile to take the 

maximum plug power, Pmax, into account (3): 
 

( ) )3(
max

;/max
_

P
EV

N
PV

P
EVPV

P =

 
4) When the EV is connected at work (instant t1), 

the BMS calculates the energy required by the 
battery (4), and the energy available from PV 
panels (5): 
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5) The BMS calculates the charging profile used 

between t1 and t2 (6): 
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Presently the SOC_init_pm value may not be reach 
if WPV_EV < Wbat. That is why the SOC value at 
time t2 will be analysed. 
6) When the driver is back home at evening, the 

energy required to reach the SOC_init_am 
value is delivered to the battery with two 
possible strategies: 

i. EVs are charged from 1 am at maximum 
power Pmax. Then a peak power will be 
seen on the demand curve.  

ii.  The aggregator built a charging profile to 
fulfil the deep of demand in the middle of 
the night. First each EV sends its energy 
need, WEV_night, to the aggregator who 
computes the energy need of its fleet, 
Wfleet_night. The aggregator also needs a 
forecast of the demand curve at the 
substation level. Then he computes the 
load profile Pfleet_night for its fleet, and 
sends it to all EVs. Finally, each EV BMS 
deduces its own charging profile from 
equations (7): 
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3.3 Synchronisation with wind 
generation 

The method is the same as for PV generation. 
The aggregator uses the profile of wind 
generation forecast, Pwind, and sends the profile 
Pwind_EV to each EV ( ) )8(

max
;/max

_
P
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N

wind
P

EVwind
P =

 
Then, the BMS calculate the day charging profile 
between t1 and t2-1h , 
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And the night charging profile between t3 and t0-
1h 
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The last hour before departure is available for a 
charge at full power the SOC_init_am value has 
not been reached. 

4 Simulation results 
In the base case, the simulations have been run 
for a fleet of 500 EVs, 16 500 m² of PV panels, 
and 7 kW EVSE. The simulation time step is 5 
min.  

4.1 Non controlled charging 
The mean daily energy consumed by the fleet is 
3.2 MWh (6 kWh per EV). In the example of 
Fig.7, the targeted SOC at t0 is equal to 0.9. 
Vehicles begin to charge simultaneously at 1 am. 
Even if the peak power due to EV (19 MW) is 
lower than the peak value of the demand (22 
MW), the network operator may rather charge  
 

 
Figure 7: load profile at the substation (top), EV 

charging profile and PV generation (bottom) for a day 
of June   

EVs when distributed sources feed-in energy (to 
prevent voltage troubles). 

4.2 Synchronisation with PV generation 
The strategy presented in section 3.2 has been 
analysed with a main goal: what is the ratio of 
green charging? It depends on SOC targets (at t0 
and t2), EV number, and PV surface. 

4.2.1 Day charging profile with PV 
First, let us verify that the day charging profile 
follows the PV generation (Fig. 8). In this case the 
SOC_init_am and SOC_init_pm are respectively 
equal to 0.7 and 0.9 to privilege the day charging 
when sun is shining. It can be seen that day 
charging matches with the hourly mean value of 
PV generation.  
 

 
Figure 8: EV charging profile and PV generation 

EV charging drops to zero at 5 pm, and a one MW 
peak is observed at night to charge EVs that come 
back home with a SOC lower than SOC_init_am. 
back home with a SOC lower than SOC_init_am. 
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4.2.2 SOC at t0 and t2 
In our strategy, the day charging is only done 
with PV sources. Then if there is no sun, the 
SOC_init_pm value will not be reached at t2. In 
Fig. 9, we give the cumulative distribution 
function of SOC(t2) and SOC(t0) after one day 
trip. SOC(t2) varies between 0.4 and 0.9; 50% of 
the values are greater than 0.87. The lowest 
values correspond to cloudy days when EV 
charging is low at work (it is confirmed with 
simulations where PV generation is forced to 
zero). SOC(t0) is mainly distributed (65%) 
between 0.7 and 0.75. Values greater than 0.75 
are those of EVs that have a SOC greater than 
0.8 at t2. 
 

 
Figure 9: frequency functions and cumulative 

distribution functions for SOC(t0) and SOC(t2). 500 
EVs and 195 days. SOC_init_am = 0.7 and 

SOC_init_pm=0.9 

4.2.3 Rate of charge from PV 
As our strategy aims at increasing the green 
charging from PV, let us look at the rate of 
charge from PV for all the fleet. This rate is 
define by (11) 
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In the case presented previously, this rate is equal 
to 62%. An analysis per season gives 43% in 
winter, 65% in spring, 73% in summer, and 65% 
in autumn.  

4.2.4 Power profiles  
Here we show the profiles for a cloudy day and a 
sunny day. In the first case, EVs are charged at 

night during the deep of demand. The peak seen in 
Fig. 7 has been deleted. 
 

 
Figure 10: profiles for a cloudy day. EV are only 

charged at night 

 

 
Figure 11: profiles for a sunny day. 

For a very sunny day (Fig. 11) EVs are mainly 
charged between 10 am and 5 pm if SOC_init_pm 
is chosen greater than SOC_init_am. Here, 
SOC_init_am and SOC_init_pm are respectively 
equal to 0.7 and 0.9, thus the energy needs are very 
small at night. It can be noticed that in Fig. 11, 
only a part of the PV energy is used for EV 
charging. On a yearly base, 40% of the PV 
generation is used for EV charging. 

4.3 Parametric analysis 
First, we analyse the influence of EV number, and 
PV panels’ surface (Fig. 12). It confirms that the 
rate of charge from PV decreases when EVs 
number increases, and when PV surface decreases. 
Second, we analyse the influence of SOC_init_am 
and SOC_init_pm, on the rate of charge from PV 
(Fig.13). These SOC values are in the range [0.5; 
0.9]. It can be seen that for low values of 
SOC_init_am, a saturation is observed for the  
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Figure 12: rate of charge from PV versus EV number 

for three PV surfaces. SOC_init_am = 0.7 and 
SOC_init_pm = 0.9 

 

 
Figure 13: rate of charge from PV as function of 

SOC_init_am and SOC_init_pm. 500 EVs and 16500 
m²  

rate of charge from PV. The saturation level 
depends on the sun irradiation and PV surface. 
Then to maximize the green charging from PV, 
and to secure the driver with a high enough SOC 
value at t0, an optimal choice could be circa 
SOC_init_am = 0.75 and SOC_init_pm = 0.9. 

5 Conclusion 
In the present paper, we have proposed strategies 
to maximize the green charging of EVs with 
either PV or wind generation. Results have been 
presented in case of PV generation. It is possible 
for an aggregator to propose green charging of its 
EVs fleet if he matches the charging profile with 
PV forecast. Rate of green charging can be as 
high as 60-70%, but it depends on the fleet size 
and on the PV panels’ size. Nevertheless the 
optimal green charging can be reached if the 
drivers accept to live their home in the morning 
with a battery that is not fully charged. In order 

to reduce this uncertainty, a mix PV/wind energy 
content is relevant.  
Finally, the charging strategy has been proposed in 
the context of distribution network, which means 
that EV and renewable sources have to be located 
in the same area. Nevertheless, the strategy can be 
applied to an aggregator that operates a fleet in 
France and that sells renewable energy to 
producers located everywhere in France. He would 
just have to match the generation forecast of the 
producers. 
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