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Abstract

For proper operation, fuel cell hybrid propulsion systems need an Energy Management Strategy (EMS).
A variety of such EMSs have been presented in literature. This paper provides an overview of EMSs re-
cently proposed in literature. It categorizes the EMSs to their theoretical background, their applicability
to different electric topologies, the storage technology used and the considered vehicle type. From this
inventory is concluded that for a broad range of topologies for PEM-based fuel cell hybrid propulsion
systems, EMSs are available in literature. Issues left for further scientific research are the further explo-
ration how to integrate a-priori information as trip data in the EMS and how to expand the lifetime of
the fuel cell stack and/or the storage by including models and measures against degradation in an opti-
mizing EMS. Issues left for practical implementation are an extension of the area of operation to harsh
environments and cold startups and a real-time validation of proposed EMSs on actual fuel cell hybrid
vehicles.

Fuel Cell Hybrid Vehicle, Energy Management Strategy, Control Theory

1 Introduction

1.1 Background

Hybrid propulsion systems by definition com-
prise a primary power source and an energy stor-
age. For Fuel Cell Hybrid Electric Vehicles
(FCHEV), the fuel cell system acts as the pri-
mary source and a battery and/or supercapacitor
enables the storage of electrical energy. As both
the primary source and the storage can provide
electric power for propulsion, a control strategy
is needed to define the distribution of this power
demand over fuel cell stack and storage. In liter-
ature, this supervisory control strategy is referred
to as the power split strategy, power split control,
power management strategy or energy manage-
ment strategy. In this paper it will be referred to
as the Energy Management Strategy (EMS).
The EMS has to ensure that constraints on the op-
eration of the fuel cell system and storage are not
violated, without compromising on the drivabil-
ity of the vehicle. Main constraints to be consid-

ered are the power ratings of fuel cell stack and
storage and the prevention of depletion or over-
charging the storage. As not violating these con-
straints does not result in one unique solution, it
leaves the EMS room for optimization. This free-
dom in the control problem is reflected in the va-
riety of EMSs presented in literature.

1.2 Objective
This paper intends to provide an overview
of EMSs for fuel cell hybrid propulsion sys-
tems discussed in literature. Objective of this
overview is to enable the reader to decide which
literature to examine in support of own EMS de-
velopment and implementation.

1.3 Approach
Based on a literature survey over journals of pub-
lishers as Elsevier, IEEE and Springer, and con-
ferences regarding fuel cell hybrid propulsion,
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recent developments in EMSs for FCHEVs have
been evaluated. These results are merged with
the observations made in a PhD project on en-
ergy management for hybrid propulsion systems
[86].

2 Publications
Clearly, energy management for fuel cell hybrid
propulsion is a recent area of scientific research.
Although both fuel cell technology and control
and optimization theory exists for over at least
five decades, the vast majority of publications on
the subject are presented only in the last ten years
(figure 1). This is in line with the recent aware-
ness for sustainable transportation.
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Figure 1: Publications per year.

With respect to publications, it is remarkable that
first authors countries, contributing most to EMS
solutions for fuel cell hybrid propulsion, are not
necessarily countries with a traditional large au-
tomotive industry (see figure 2). Countries with
a modest automotive industry, as Canada and
Spain, do significantly contribute to this subject.
For Canada, this can be partly understood from
their leading fuel cell industry. More remarkable
is that countries like Germany and Japan, with
a strong automotive industry, appear to have no
significant contribution on the subject.

3 Vehicles
Most publications on EMSs for FCHEVs do not
state to which vehicle type the presented EMS
applies. Therefore, most EMSs can be consid-
ered sufficiently generic to be relevant to a broad
variety of vehicle types.
Nevertheless, a few papers consider a specific
type of vehicle, such as a three-wheel auto rick-
shaw [62], a scooter [48, 83], an unmanned
ground combat vehicle [1], a low speed cargo ve-
hicle [26, 67], a city bus [33, 57, 95, 102, 103,
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Figure 2: Publications found, categorized per first au-
thors country.

104], a tramway [29, 34, 93, 95] and a special-
ized test vehicle [63]. Although specific in vehi-
cle type, most of these papers can be considered
a demonstration of a generic EMS on a specific
vehicle. This further supports the statement that
most presented EMSs are sufficiently generic to
be applicable to different vehicle types.
In addition, some papers also consider stationary
back-up systems [95] and grid connected systems
including a reformer [37], extending the applica-
tion of the EMS to more than vehicles.

4 Topologies

As primary power source, generally Polymer
Electrolyte Membrane (PEM) fuel cells are con-
sidered. For propulsion, PEM technology is that
common, that the majority of publications just
refer to fuel cells, even when considering only
PEM fuel cells. A few publications explicitly
consider different fuel cell technologies, as High
Temperature PEM ([46]) and a fuel cell system
including a reformer [37]. Although the charac-
terization of these fuel cell technologies for EMS
differs slightly from PEM, the EMSs presented
for specific fuel cell technologies should not be
considered very different from those considering
low temperature, direct hydrogen PEM.
With respect to the storage of electrical energy,
two main groups can be distinguished: EMSs
that consider a battery and EMSs that consider
a supercapacitor or ultra-capacitor as storage, as
indicated in figure 3. A minority considers the
combination of both a battery and a supercapac-
itor, or more than one storage configuration, in-
cluding no storage at all.
When defined, the battery technology considered
is dominantly lithium-ion.
All EMSs consider the amount of stored energy.
From the perspective of the EMS, a supercapac-
itor has the advantage over a battery that the
amount of stored energy is directly indicated by
the voltage on its terminals, whereas for batteries,
most EMSs assume a State Of Charge (SOC) or
State Of Energy (SOE) estimator to identify the
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amount of stored energy, without further specifi-
cation.
The electric motor(s) of the vehicle are connected
by an inverter to the DC-bus of the propulsion
system. The fuel cell stack and the battery and/or
supercapacitor as storage can be electrically con-
nected to this DC-bus in several topologies. Fig-
ure 4 indicates some of these configurations.

• Topology (1) combines fuel cell stack and
storage without any DC/DC converter. In
this configuration, the power delivered by
the fuel cell stack and the battery or super-
capacitor are directly coupled. A reference
to this configuration is rare [7].

• Topology (2) is a common configuration. It
enables the control of the power split over
the fuel cell stack and the battery. This con-
figuration is referred to in [1, 6, 14, 17, 21,
22, 27, 28, 32, 36, 40, 45, 47, 49, 50, 51, 54,
56, 57, 58, 59, 61, 62, 65, 69, 75, 77, 78, 80,
81, 82, 83, 84, 85, 86, 93, 99, 100, 101, 102,
103, 104, 108].

• As the DC/DC converter in topology (3) is
more complex (bidirectional) as in topol-
ogy (2) and as energy from the storage
will always pass the converter twice (charg-
ing/discharging), this topology is not favor-
able with respect to power electronics and
losses. It is referred to in [16, 74, 96] and to
some extent in [73].

• Topology (4) is commonly supported. This
configuration enables the control of both
fuel cell stack power and the power from
the storage. As these powers should match
the demanded power, a tight control of both
converters is needed. An additional capac-
itor on the DC-bus to decouple fuel cell
stack and storage power from the power de-
mand relaxes this problem, but essentially,
this results in topology (5). Configuration
(4) enables the control of the DC-bus volt-
age, prohibiting large voltage swings on the
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Figure 4: Topologies.

DC-bus. As a result, the inverter require-
ments on its DC-voltage can be less strin-
gent. A few publications, as [38], discuss
the topology on voltage level. Most publica-
tions only consider power flows, and do not
further elucidate the subject. It is referred to
in [2, 3, 5, 10, 12, 23, 30, 31, 34, 35, 37, 44,
41, 52, 53, 55, 60, 63, 64, 72, 79, 87, 88, 91,
92, 94, 97, 110, 112].

• Topology (5) includes both a battery and
a supercapacitor as storage. Advantage of
this configuration is the combination of the
power handling capabilities of the superca-
pacitor with the energy storage capabilities
of the battery. Disadvantage is its complex-
ity. Disadvantage is its complexity. It is
referred to in [33, 64]. This configuration,
but with the battery and supercapacitor in-
terchanged, is mentioned in [58].

• For topology (6), comprising a fuel cell
stack, battery and supercapacitor, DC/DC
converters are included between all com-
ponents and the DC-bus [25, 66, 68, 89,
98, 105, 107]. As topology (5), it com-
bines the advantage of the power handling
capabilities of the supercapacitor with the
energy storage capabilities of the battery.
Comparable to topology (4) over (3), it en-
ables voltage control of the DC-bus, but all
against an increase in complexity.

A number of less frequent mentioned alternative
topologies are reported. Some examples of vari-
ations mentioned:

• In [48] an integrated power electronics so-
lution is presented for a relative low power
application, combining the power flow of
the fuel cell stack and supercapacitor in one
converter structure.
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• As alternative topology, [9] proposes to
charge the battery from the fuel cell stack
using a separate DC/DC converter, with
a diode connection to the supercapacitor
defining the DC-bus voltage. Although both
DC/DC converters can be optimized for
their specific task, a disadvantage seems that
the battery can not be used to store signifi-
cant amounts of regenerated energy (down-
hill driving). This is partly covered by a
switch in parallel with the diode, but clos-
ing this switch disables the ability to control
the battery and the supercapacitor indepen-
dently.

• In [38, 39], a switched multi-power source
approach is considered, which has some
similarity with the interleaved multiple-
input power converter of [42, 43] and the
three-port for battery and supercapacitor in
[96].

• As brake, [93] proposes a controlled electric
resistor between the nodes of the DC-bus.

• In [106], the supercapacitor is connected via
its own DC/DC converter to the input of the
DC/DC converter of the fuel cell stack in-
stead of to the DC-bus.

• A further generalization of topologies is
found in [19], where DC/DC converters
are considered between all elements in the
propulsion system, including auxiliaries.

Discussions on different topologies are found in
[70, 109]. A discussion on the differences be-
tween topology (1) and (2) for a supercapacitor
as storage is raised in [83]. In [90], topology
(4) with a supercapacitor as storage is compared
with topology (2) with a battery as storage. In
[70] it is concluded that for a battery as energy
storage, topology (2) prevails with respect to a
minimum fuel consumption.
Some publications do not state a topology of the
propulsion system [20, 111] and discuss their
EMS entirely on power level [11, 15, 71], includ-
ing the properties of possible converters in their
characterization of the fuel cell system or stor-
age.

5 Energy Management Strategies
This section intends to provide an overview of
presented EMSs for FCHEV, categorized per ap-
plied control theory. As presented EMSs occa-
sionally combine different control theories and as
control theories themselves are sometimes hard
to categorize, these categories should be consid-
ered an indication only.

5.1 Classic control
With classic control we refer to linear feed-
back/feedforward control as PID-controllers.
Within this category, there is a group of publica-
tions discussing a power converter on the level

of its electric components (as MOSFETs and IG-
BTs). As their focus is the discussion of the pre-
sentation power converter, a linear controller is
included as EMS just to enable a proper opera-
tion of the considered converter [40, 96]. Gen-
erally, these publications do not consider control
goals as a minimum fuel consumption.
The three-port power converter for battery and
supercapacitor in [96, 97], includes an EMS im-
plemented as (adaptive) PI-controllers, control-
ling the duty cycle of the semiconductor power
switches. [7] provides a setpoint for a superca-
pacitor current, based on voltages in the system
and a master PI controller. Setpoints are realized
using slave PI-controllers. The approach to use
the voltage of the supercapacitor as indicator of
the amount of stored energy, is also applied in
[87, 88], sometimes explicitly referred to as volt-
age control [75]. A comparable approach, ex-
tended to a battery, is presented in [68, 72]. A
voltage control approach with a combined con-
verter for fuel cell stack and supercapacitor is
demonstrated in [48].
Also on power converter level, an H∞-controller
balancing performance and robustness of the
converter is discussed in [44]. Distinguishing
between three modes of operation, [4] combines
PI-control with sliding mode control to distribute
transients over the different power sources.
When representing demanded torque and cur-
rents in the system as states, linear transfer func-
tions can represent the system components, en-
abling a linear controller design. Such approach
based on states also enables methods as state es-
timators and state feedback controllers [36].
Where classic control is dedicated to linear rela-
tions, flatness-based control can partly deal with
nonlinearities in the system, still enabling linear
control [73, 74, 92, 91].

5.2 Filtering
Two approaches focussing on wavelet decom-
position are presented in [94] for a fuel
cell/supercapacitor hybrid and in [107] for a fuel
cell/battery/supercapacitor hybrid. These strate-
gies focus on the distribution of the transients in
the power demand. [3] combines wavelet decom-
position with a small neural network, relating
power demand and SOC to the power requested
from the fuel cell stack.
Also [61] focusses on frequency content, but im-
plements this on the level of the DC/DC con-
verter using linear transfer functions. [6, 8] dis-
cuss an approach that also results in a power split
over a frequency range, including the boundaries
of the fuel cell stack and the supercapacitor. This
approach results in a direct duty cycle control of
the DC/DC converter between the supercapacitor
and the DC-bus.

5.3 Heuristic strategies
Heuristic strategies do not derive an EMS from a
general control theory, but rely on one or a set of
heuristic rules to operate the system.
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An example of such rule is presented in [1],
where the reference for the fuel cell power equals
the power demand plus a constant times the devi-
ations in the SOC of the battery. A slightly more
complex rule is presented in [108, 109], where
a power split ratio between fuel cell stack power
and battery power is defined based on the volt-
age of the fuel cell stack and the SOC of the bat-
tery. Such relations can be implemented using
lookup tables [98]. [81] directly relates the SOC
of the battery to an operating mode of the fuel
cell stack, and extends this by shifting the point
of operation of the fuel cell stack based on the ob-
served efficiency of the system. As the SOC of
the battery is not directly available as measure-
ment, [50] proposes a rule using the open-clamp
voltage of the battery to define the reference for
the fuel cell stack current.
Under the assumption the battery can deliver
power faster than the fuel cell stack, [89] fo-
cusses on controlling the battery, deriving the
fuel cell stack current from the determined bat-
tery current, including a rate limiter on the
fuel cell stack current in order to avoid fast
changes in the fuel cell current. The reference
for the battery current is derived from the DC-
bus voltage. This approach is extended to fuel
cell/battery/supercapacitor hybrids in [90].
A group of heuristic EMSs consider a set of op-
erating modes. For a fuel cell/supercapacitor
hybrid, such a rule based approach differenti-
ating to modes of operation (as braking or de-
livering peak power), is presented in [29, 34,
71]. Such rules provide setpoints for opera-
tion, controlled by local PI controllers [29, 34].
In addition to these rules, the operating set-
point per mode can be optimized with respect
to a minimum fuel consumption. The number
of modes, sometimes referred to as states, may
vary. By example, for a fuel cell/battery hy-
brid, [46] differentiates between six modes of
operation, where [45] uses four modes. For a
fuel cell/battery/supercapacitor hybrid, [39] uses
seven modes to switch on and off the different
power sources.
Advantage of most heuristic EMSs is their sim-
plicity and focus on real-time implementation.
Disadvantage is that, due to their nature, no guar-
antees can be provided on properties as stability
or the ability to minimize the fuel consumption.

5.4 Fuzzy Control
Popular in the nineties of the last century, fuzzy
control provides a linguistic way to create control
systems. Compared to other control applications,
fuzzy control is relatively frequently presented as
approach to obtain an EMS for FCHEVs. This
might be caused by the freedom in the system.
As example: the amount of stored energy should
be kept within the boundaries of the storage,
whereas the absolute amount of stored energy is
less relevant. This relaxes the accuracy of the
control goals, which makes the control problem
particulary suited for fuzzy control.
Essentially, fuzzy control defines static, nonlin-
ear relations between inputs and outputs. Still,

dynamics can be included by referring to vari-
ables as an amount of stored energy or a rate of
change. Proposed fuzzy control schemes indeed
include the SOC of the battery as input variable,
as for example in [15, 59, 66, 69, 100]. Where
most papers use power and SOC for fuzzyfica-
tion, [55] details this to voltages, currents and
changes in voltages, considering a supercapaci-
tor as storage. The nonlinear nature of fuzzy con-
troller is explicitly used in [13] to reduce voltage
ripple on power converter level.
The rules in the inference of the fuzzy controller
have to be defined by an expert, who also chooses
the size of the fuzzy sets. Sets of seven or more
membership functions are presented [33, 63, 80,
100], whereas sets of three or four membership
functions [47, 56] also provide experimentally
validated solutions [57, 62]. Generally, there is
a balance between the number of membership
functions and the care needed to define each sin-
gle membership function. Still, a large number
of membership functions increases the complex-
ity of the inference, reducing its maintainability.
To adapt to the driving pattern, [80] proposes to
relate the position of the membership functions
to the current operating conditions. In [56], the
position of the membership functions is treated
as an optimization problem, maximizing the ef-
ficiency of the propulsion system. An adaptive
neuro-fuzzy inference system to improve the fuel
economy of the vehicle is presented in [59].
Where [59] combines a small neural network
with a fuzzy inference, [23, 24, 25] combine
fuzzy control with wavelet filtering to split the
power demand over fuel cell stack, battery and
supercapacitor. A combination of fuzzy con-
trol and flatness control is presented in [106],
where a flatness control algorithm decides on the
power split between the fuel cell stack and a bat-
tery/supercapacitor combination, and within this
combination, the fuzzy controller distributes the
power over the battery and the supercapacitor.
Common to all fuzzy control schemes is that a
real-time implementation is easily obtained. This
is an advantage for more complex topologies
comprising a fuel cell stack, battery and super-
capacitors [33, 58, 66].

5.5 Optimizing strategies
As discussed in section 5.4, when there is free-
dom left in a controlled system, there is room
for optimization. Optimizing strategies mathe-
matically define control goals in a cost function,
including constraints as power and energy rat-
ings and a constraint on the average stored en-
ergy over a driving cycle. The cost function itself
generally refers to a minimum in fuel consump-
tion [77, 84, 86], a minimum in costs [104], a
minimum in losses [85], or a combination of ob-
jectives [41, 42, 43].
Although comparable in their definition of the
cost function, various approaches to obtain an
optimal control are presented.
A number of papers propose numerical solu-
tions, as Dynamic Programming (DP), nonlinear
programming and variations as Stochastical Dy-
namic Programming (SDP) [51, 53, 54, 78, 82].
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One SDP related optimization method including
probability is referred to as ant colony optimiza-
tion [76]. A second SDP related method, in-
tended to approach the global optimum solution
efficiently, is referred to as particle swarm opti-
mization [41, 42, 43].
Disadvantage of DP-based solutions is the com-
putational effort needed, possibly hindering real-
time implementation. As solution [101, 104]
simplifies its DP strategy by considering solu-
tions per driving mode. By representing the cost
function as a quadratic function [21, 22, 18, 105],
a Linear Quadratic Control (LQC) approach is
enabled. In [52], such approach is combined with
a-priori road trip information.
A method originating from Internal Combustion
Engine (ICE) based hybrid propulsion systems,
is the Equivalent Cost Minimization Strategy
(ECMS). A number of publications discuss the
application of ECMS to FCHEVs [79, 93, 103].
ECMS characterizes engine and storage with first
or second order polynomials to enable a global
minimum. Some variations are presented com-
bining ECMS with a prediction [35] or estima-
tion of the power demand and transient load of
the fuel cell stack [102].
The approximation of first principle models with
polynomials is not necessary for fuel cell hy-
brids with a battery as storage, as the first prin-
ciple characterization of the fuel cell stack and
the battery have mathematically congruent rep-
resentations. As a result, an EMS providing a
global minimum can be derived based on the
first principle models directly [84, 86]. Such an-
alytical solutions based on Pontryagin’s Maxi-
mum/Minimum Principle or Bellman’s principle
of optimality, provide real-time implementable
solutions, still approaching optimality [86, 111].
Such optimal solution is even reduced further in
complexity to a rule based EMS in [110, 112].
Still, to provide a solution, information is needed
on the future behavior of the vehicle, typically to
define the value of the Lagrange multiplier(s) in
the optimization. In [11, 85] this Lagrange mul-
tiplier is related to the energy content of the bat-
tery. The need for this information is reduced
to an estimate of the future average power de-
mand, based on the past power demand, repre-
sented by the SOE of the battery in [85, 86]. In
[84, 86], this is reduced to the current demand,
represented by the SOC of the battery. An adapt-
ing algorithm estimating such future system be-
havior is proposed in [60], a heuristic prediction
is presented in [14] and a-priori trip information
is included in [52].
Model Predictive Controllers (MPC) predict the
future, based on a model of the system. Such ap-
proach, including a quadratic cost function and
system identification based on multiple models,
is presented in [16]. Also [2] proposes to dis-
tribute the operating area of the propulsion sys-
tem over a set of linear models and combines this
with an MPC approach.

5.6 Maximizing efficiency
To obtain a minimum fuel consumption, a num-
ber of papers focus on the efficiency of the fuel

cell system [17, 19, 26, 95]. Based on a map
of the fuel cell system efficiency, zones are de-
fined with a mode of operation per zone as EMS
[30, 31]. Also [12] defines modes by thresholds,
and operates the fuel cell stack on its maximum
efficiency in one of these modes. Essentially,
these approaches are based on static considera-
tions on the efficiency. In [20] such approach
is combined with an adaptive controller to cover
transients in the operation of the fuel cell system,
attempting to maximize the efficiency of the fuel
cell system dynamically.
When designing an EMS on efficiency maps, it
should be noted that the maximum efficiency of
the fuel cell stack does not necessarily match the
maximum efficiency of the propulsion system.

6 Discussion

A few studies compare different EMSs. In [27]
a PID-based EMS is compared with a fuzzy con-
trol based EMS. This is extended with an opti-
mization method in [28], from which it was con-
cluded that the optimization method prevailed
with respect to a minimum fuel consumption.
For heuristic approaches, [49] examined on/off
strategies based on the maximum fuel cell power,
on the maximum fuel cell stack efficiency and on
a combination of both, for which the combina-
tion provided an acceptable balance between ef-
ficiency and power. Within optimizing methods,
[85] compared a ECMS-based approach with an
analytical solution to the optimization problem,
where the analytical solution performed best on
fuel efficiency, although differences are small.
Classic control theory uses linear models provid-
ing appealing properties as guaranteed stability
and robustness. As the actual propulsion system
is far from linear with respect to fuel consump-
tion and voltage/current relations, a guaranteed
minimum fuel consumption can not be expected
when linear control theory is applied.
Heuristic strategies and fuzzy control can easily
handle nonlinearities, providing, possibly com-
bined with filtering techniques, an appropriate
way to control also fuel cell hybrids with both a
battery and a supercapacitor as storage. Heuristic
rules defining different operating modes do have
a risk. For each combination of modes or rules, it
should be evaluated if the operation of the system
is stable and oscillation when switching between
states should be avoided.
When focus is on a minimum fuel consumption,
optimizing strategies are preferred. With respect
to fuel consumption, real-time implementation
and plug-in functionality, an EMS based on an
analytical solution to the optimization problem
seems to be favorable for systems with only a
battery as storage.
From the discussion which EMS optimizes the
operation of a FCHEVs, naturally follows the
discussion which component sizes for fuel cell
stack and storage are optimal. A few publications
make an observation on this subject [1, 9, 10, 86].
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7 Conclusions
For a broad variety of vehicle types and propul-
sion system topologies, energy management
strategies have been presented in literature. Also
with respect to optimization goals as a mini-
mum fuel consumption, solutions are presented.
Therefore, we can conclude that for most fuel
cell hybrid vehicle designs, literature provides an
applicable EMS. Thus, compared with a decade
ago, the design of an appropriate EMS is no hur-
dle anymore, hindering the introduction of fuel
cell hybrid propulsion systems.
With respect to the validation of EMSs and con-
sidered topologies, only a minority of the pre-
sented work is reported to be validated on a fuel
cell hybrid vehicle. Experiments and applied re-
search can further elucidate the value of the pro-
posed EMSs.
From a scientific standpoint, some subjects are
interesting for further research. Especially with
respect to optimizing strategies, possible infor-
mation on the future driving cycle might fur-
ther reduce the fuel consumption. Here, we can
consider a prediction of the future driving cycle
based on navigation data, dynamic route infor-
mation or on statistical trip information. With re-
spect to the propulsion system, using advanced
models, issues as battery and fuel cell stack ag-
ing can be included in the optimization problem,
extending the lifetime of the propulsion system.
In addition, an extension of the area of operation
to harsh environments and cold startups is inter-
esting to increase the robustness of the fuel cell
hybrid propulsion system.
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M., Practical control structure and energy
management of a testbed hybrid electric ve-
hicle, IEEE Trans. on Vehicular Technol-
ogy, vol. 60, pp. 4139-4151, 2011

[64] Marco J., Vaughan N.D., Design of a ref-
erence control architecture for the energy
management of electric vehicles, Int. J. Ve-
hicle Design, vol. 58, pp. 240-264, 2012
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