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Abstract

Hybrid electric vehicles (HEVs) have emerged as near term sustainable technologies to reduce fossil-fuel

dependency. The variation in fuel economy (FE) due to the variation in driving patterns exists in hybrid

electric vehicles (HEVs). Powertrain component size optimisation based on a methodology considering a

range of driving patterns including different traffic conditions and driving styles simultaneously has

previously demonstrated the potential to reduce variation in FE over standard legislative driving patterns.

Though standard legislative driving patterns are useful for comparative study, there are evidences that

legislative driving patterns are often considerably different from real-world driving. Therefore to ensure

wide applicability, the methodology needed to be validated for real-world driving pattern. This paper

applied the methodology for ten real world driving patterns over a predefined route consisting of urban and

highway driving to investigate the applicability of the methodology in real world. The study was carried

out using a series-parallel Toyota Prius HEV. A rule based supervisory control strategy was considered as

the energy management. A genetic algorithm was considered as the optimisation method. The methodology

demonstrated the potential to reduce variation in FE by up to 33% in real world driving.
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1 Introduction
The decrease in fossil-fuel reserves has
motivated automotive manufacturers to look for
alternative technologies to reduce fuel
dependency. Hybrid electric vehicles (HEVs),
combining an internal combustion (IC) engine
and electric motors are potential technologies for
fuel economy (FE) improvement.
In spite of the potential to improve FE as
compared to conventional vehicles (IC engine
powered), variation in FE exists in HEVs due to
variation in driving patterns [1], [2] along with

other factors such as variation in atmospheric
temperatures and operation of air-conditioning [3],
[4]. Driving patterns are speed-time profiles of
vehicles [5]. The importance of driving patterns is
even higher in HEVs as evidence of higher
variation in FE due to variation in driving patterns
in HEVs as compared to conventional vehicles was
found in existing literature [6], [7], [8], [9]. The
variation in FE of an HEV could be up to 30%
higher as compared to a conventional vehicle [9].
It was found in a previous study that variation in
FE due to variation in driving patterns could be
reduced when powertrain component sizes were
optimised for FE considering a range of driving
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patterns of different traffic conditions and driving
styles simultaneously [10]. In other words,
variation in FE could be reduced when
powertrain components are optimum over a
range of driving patterns simultaneously (termed
as “proposed methodology”), rather than over a
single driving pattern (termed as “conventional
methodology”) [10].
In the study [10], standard legislative driving
patterns were categorised into urban and highway
traffic conditions and each traffic condition was
further classified into three driving styles –
conservative, normal and aggressive and all
categorised driving patterns were used
simultaneously for the proposed methodology to
find an optimum combination of powertrain
components for optimum FE. The study
considered one conservative urban driving –
ECE15, one normal urban driving – FTP-75, one
aggressive urban driving – LA92, one
conservative highway driving – EUDC, one
normal highway driving – HWFET, one
aggressive highway driving – US06. For the
conventional methodology, NEDC, LA92 and
HWFET were considered separately to find an
optimum combination of powertrain components.
The proposed methodology provided a single
optimum design over the range of six driving
patterns and the conventional methodology
provided three different optimum designs over
the NEDC, LA92 and HWFET. Each optimum
design of both the methodologies were evaluated
for FE over three standard legislative driving
patterns – NEDC, LA92, HWFET and a real-
world driving – Artemis. The proposed
methodology reduced variation in FE over the
driving patterns as compared to the conventional
methodology.
Standard legislative driving patterns were
developed for the adherence of legislative norms
by all vehicles. Though standard legislative
driving patterns are useful for comparative study,
there is evidence that standard legislative driving
patterns are considerably different from real-
world driving [11]. Though the proposed
methodology demonstrated its potential to reduce
variation in FE over standard driving patterns,
the optimum design of the proposed
methodology needs to be validated in real world
driving patterns extensively to establish its
applicability in practical application.
In the previous study [10], the objective was to
develop the proposed methodology and this
paper investigated the applicability of the
methodology in real world driving.

In this paper, powertrain components were
optimised for FE using both the proposed and
conventional methodologies based on standard
legislative driving patterns similar to the previous
study [10]. After optimisation, optimum design of
the proposed methodology was evaluated for ten
driving patterns over a predefined route consisting
of urban and highway driving as against that of the
conventional methodology. Vehicle exhaust
emissions and component cost were not considered
for the study.
This paper is categorised into six sections. The
first section is introduction. The second section
briefly discusses the methodology of powertrain
component size optimisation proposed in the
previous study [10] followed by the discussion on
the simulation set up for the study in the third
section. The fourth section presents results and the
fifth section concludes the study followed by
future direction of work in the sixth section.

2 Methodology of component
sizing

The “proposed methodology” (Method 2) of the
optimisation of powertrain component sizes in the
previous study considered a range of driving
patterns of different traffic conditions and driving
styles simultaneously, whereas the “conventional
methodology” (Method 1) considered a single
driving pattern to find a combination of powertrain
component sizes for optimum FE [10]. In the
proposed methodology, driving patterns were
categorised into different traffic conditions and
each traffic condition was further classified into
different driving styles. All the categorised driving
patterns were considered simultaneously during
optimisation.

3 Simulation study
The simulation set up of the study is described in
this section which is categorised into nine
subsections. Each subsection is detailed next.

3.1 Vehicle configuration

The study considered a series-parallel Toyota Prius
HEV. A simulation model of the vehicle from
WARPSTAR, based on MATLAB/SIMULINK,
was considered for the study [12]. The vehicle
simulation model consisted of the following major
parameters

 Vehicle mass: 1368 kg
 Rolling resistance coefficient: 0.009
 Body aerodynamic drag coefficient: 0.29
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 Vehicle frontal area: 2.0 m2

 Transmission: Power-split
 Initial battery state of charge (SOC): 0.7

3.2 Design parameters

The Toyota Prius HEV had a spark ignition
engine (1.5L) of 43 kW, a brushless DC motor of
30 kW, a generator of 15 kW and a battery of 6.0
Ah. These components were considered as the
base components for optimum designs. The IC
engine’s maximum power (PIC), generator’s
maximum power (PG), motor’s maximum power
(PM) and battery’s maximum capacity (PC) were
considered as design parameters for the
optimisation to get optimum FE. The range of the
variations of each design parameter was kept
within ±70% of the base component as listed in
Table 1 to allow sufficient design space for the
optimisation algorithm to find optimum
components. With very restricted design space,
the search for optimum components also
becomes restricted. With infinite design space,
the optimisation algorithm would take higher
computational time to find optimum components.
Though there could be argument about the
justification of choosing the ranges of each
parameter, the ranges were constant for both the
methodologies and even if there were effects, the
effects were same for both the methodologies.
Therefore, the effect of the ranges on the
comparative investigation was of little
significance on the comparative results.

Table 1: Range of variations of each design parameter

Design

parameters

Lower limit Upper limit

PIC, kW 12.9 73.1

PEM, kW 9.0 51.0

PG, kW 4.5 25.5

CB, Ah 1.8 10.2

Different power ratings of the components during
optimisation were achieved by linear scaling of
the performance of the components of the Toyota
Prius. The study assumed linear relationship for
IC engine power and fuel consumption. In actual
case it might not vary linearly and might affect
the final FE values. However, in this study the
aim was to compare two methodologies and
hence, the absolute value of FE was of little
relevance on the comparative results.

It was assumed linear relationship between torque
and power of IC engine, generator and motor.
Efficiencies of IC engine, generator and motor
were assumed constant.
For battery, it was assumed linear relationship
between battery capacity and current. Charging
and discharging resistance of battery were assumed
constant. Number of modules in a battery and
number of cell in a module were assumed constant.
For IC engine, generator and motor operating
speed ranges were assumed constant for respective
scaled components.

3.3 Problem formulation

The problem was formulated as a constraint
optimisation problem where an optimum
combination of the IC engine, generator, motor
and battery needed to find for optimum FE without
sacrificing vehicle performance. The problem was
formulated as follows,

Minimise, f(x), x € X
Satisfy, hi(x) ≤ 0, i =1, 2,... , N
Where,
x is the solution to the problem within the solution
space X
X is the upper and lower limit of the design
variables
f(x) is the objective function
hi(x) ≤ 0 represents constraints
N is the number of constraints

3.4 Constraints

Acceleration, maximum speed and gradeability of
the Toyota Prius were considered as constraints so
that the performance of optimum components
should not deteriorate as compared to the Toyota
Prius HEV. These performance constraints were as
follows and calculated as suggested in [13], [14].

 Acceleration (0~60 mph) :<13.4 seconds
 Maximum speed: > 113.3 mph
 Gradeability: >13.8% at 55 mph

Another constraint was the battery SOC which was
considered in order to compare different designs
for FE performance. In order to eliminate the
influence of initial battery SOC on FE, the SOC
correction has to be selected and hence the initial
and final battery SOC on all driving patterns needs
to be the same [15], [16], [17].
For this study, the constraint was

 Difference between the final battery SOC
and the initial battery SOC: < 0.5%
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3.5 Supervisory control strategy

A rule based electric assist charge sustaining
supervisory control strategy was considered for
energy management [18]. The control strategy
consisted of the following rules

 The electric motor supplied all the
driving torque if the battery SOC was
higher than SOCL and the vehicle speed
was below a certain minimum speed VC

or the required torque was smaller than
TC.

 When the required torque was higher
than TC and the engine ran in its efficient
region with the required driving torque,
the engine produced the torque to drive
the vehicle alone.

 When the required torque was higher
than the maximum torque of the engine
at the engine’s operating speed, the
motor provided the additional torque.

 When the battery SOC was lower than
SOCL, the engine provided additional
torque which was used by the motor to
recharge the battery.

 When the battery SOC was lower than
SOCH, the motor charged the battery by
regenerative braking.

SOCL: Lowest desired battery SOC
SOCH: Highest desired battery SOC
VC: Vehicle speed below which vehicle was
operated electric only mode
TC: Required vehicle torque below which vehicle
was operated electric only mode

3.6 Optimisation method

A genetic algorithm (GA) was considered as
optimisation method [19]. GA is good at finding
global optimum. It requires neither any gradient
information like derivative-based optimisation
method nor solving equations like analytical-
based optimisation methods. GA has proven its
potential in finding a combination of powertrain
components of HEVs for optimum FE [20], [21],
[22].
The GA is a population based method and every
individual of the population is a potential
solution. Each individual of the population is an
encoded string known as a chromosome that
contains the decision variables known as genes.
The method consists of selection, crossover and
mutation operation. The selection is the process
to select the individuals with higher fitness over

the others to produce new individuals for the next
generation of population. Crossover is the method
of merging the genetic information of two
individuals called parents to produce the new
individuals called children. Mutation is a
probabilistic random deformation of the genetic
information for an individual. At first, higher
fitness individuals are selected for next generation
of population. Next, selected individuals go
through crossover and mutation to generate new
population for next generation. This process is
continued until termination criterion is achieved.
The study considered single point crossover and
the crossover probability was 0.9. The mutation
probability was 0.15. The selection method used
for the study was roulette wheel where the
probability to choose a certain individual was
proportional to its fitness [23]. Death penalty
function was used to handle constraints [24], [25].
The population size was 40 and maximum number
of generation was set to 200, as after 150
generations there was little improvements of
results.
Since GA is stochastic in nature, each optimisation
run does not produce same result and there is no
simple method available to verify for a component
size optimisation problem of HEVs whether the
solution reaches global optimum. Therefore, each
optimisation run was carried out 10 times and the
optimum design with minimum FE value was
presented as the result.
The study used model-in-loop approach [26] where
an optimisation algorithm worked along with a
vehicle simulation model. In each optimisation
run, the optimisation method produced a new
combination of powertrain components, and the
FE of that combination of components was
evaluated through a vehicle simulation model.
Based on the FE value, the optimisation method
produced a new combination of components and
the procedure continued until the termination
criterion was met.

3.7 Optimum designs

Powertrain components were optimised for
optimum FE using both the proposed and
conventional methodologies [10]. Standard
legislative driving patterns were categorised into
urban and highway traffic conditions and each
traffic conditions were further classified into three
driving styles – conservative, normal and
aggressive. The study considered one normal
urban driving – FTP-75, one aggressive urban
driving – LA92, one normal highway driving –
HWFET, one aggressive highway driving – US06
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and one conservative driving – NEDC which
consists of urban (ECE15) as well as highway
(EUDC). Classification of driving patterns was
done based on driving parameters [10], [27]. The
Method 2 considered all the five driving patterns
simultaneously, whereas the Method 1
considered each of the five driving patterns
separately to find optimum powertrain
component sizes.

3.8 Real-world driving patterns

Speed-time data of a conventional vehicle driven
by ten drivers were considered as real world
driving data. The vehicle was driven over a
predefined route consisting of urban as well as
highway driving. The ten driving patterns were
termed as D1 to D10 respectively. D6 and D8
driving patterns are shown in Figures 1 and 2.
The study assumed that vehicle speed-time
profiles were independent of vehicle type.
Though the data was collected from a
conventional vehicle, with the assumption of
independency of speed-time data from vehicle
type, the vehicle’s speed-time data could be
considered as real world driving patterns for an
initial study to validate the methodology (Method
2) in real world.

Figure 1: D6

Figure 2: D8

3.9 FE evaluation

Each optimum design of both the methodologies
was evaluated for FE over the ten driving patterns
and the coefficient of variation of FE over the ten
driving patterns was considered as the variation in
FE of that optimum design. Coefficient of
variation is the ratio of the standard deviation to
the mean. For the comparison of FE of different
designs over a driving pattern, the initial and final
battery SOC were maintained within ±0.5% by
adjusting the target SOC value of the supervisory
control strategy. The adjustment of target SOC
value was done through optimisation using GA.

4 Results and discussions
Four powertrain components – IC engine,
generator, motor and battery were optimised as per
the Method 1 and Method 2. The Method 1
produced five different sets of optimum design one
for each driving pattern, whereas the Method 2
produced a single optimum design over the five
driving patterns as shown in Table 2. The optimum
designs based on the Method 1 over the NEDC,
FTP, LA92, HWFET and US06 are termed as M1-
NEDC, M1-FTP, M1-LA92, M1-HWFET and M1-
US06 respectively. The optimum design of the
Method 2 was termed as M2. The variations of IC
engine, generator, motor and battery among the
M1-NEDC, M1-FTP, M1-LA92, M1-HWFET and
M1-US06 designs were 27.6%, 33.6%, 21.6% and
30.7% respectively.
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Table 2: Comparison of optimum component sizes

Design parameters Optimum size

Method 1 Method 2

M1-NEDC M1-FTP M1-LA92 M1-HWFET M1-US06 M2

IC engine, kW 35.1 37.9 36.3 29.3 40.5 44.9

Generator, kW 13.2 14.1 13.7 12.2 18.3 16.5

Motor, kW 39.9 39.5 44.4 44.3 34.8 30.5

Battery , Ah 6.2 8.9 8.7 7.3 8.7 7.7

Table 3: Comparison of FE over real-world driving

Driving patterns FE, mpg (miles per gallon)

Method 1 Method 2

M1-NEDC M1-FTP M1-LA92 M1-HWFET M1-US06 M2

D1 48.6 50.7 49.1 47.1 (x) 52.3 55.4

D2 64.3 66.7 65.6 57.7 66.1 65.0

D3 48.7 51.7 50.4 47.5 (x) 52.0 51.0

D4 66.0 67.2 66.9 60.1 66.1 64.1

D5 54.5 56.6 55.9 50.1 (x) 57.0 57.4

D6 46.3 49.2 47.4 47.3 (x) 50.0 51.0

D7 58.9 60.6 60.4 53.5 59.9 58.8

D8 70.9 71.4 71.5 66.0 69.6 67.5

D9 59.9 62.6 62.2 52.9 (x) 61.9 60.9

D10 61.4 62.5 62.3 55.9 61.1 59.6

Average FE, mpg 57.9 59.9 59.2 53.8 59.6 59.1

Standard deviation of

FE, mpg

7.8 7.2 7.8 5.9 6.3 5.3

FE variation,

[coefficient of

variation]

0.135 0.121 0.131 0.110 0.106 0.090

(x): failed to operate in charge sustaining mode

Optimum designs based on both the
methodologies were evaluated for FE over the
ten driving patterns as shown in Table 3. All
optimum designs except the M1-HWFET were
able to operate in charge sustaining mode (i.e.,
final battery SOC was within ±0.5% of the initial
battery SOC) over all driving patterns. The M1-
HWFET was not able to operate in charge

sustaining mode over D1, D3, D5, D6 and D9
driving patterns.
Average FE of the M1-NEDC, M1-FTP, M1-
LA92, M1-HWFET and M1-US06 designs were
57.9 mpg, 59.9 mpg, 59.2 mpg, 53.8 mpg and 59.6
mpg respectively.
Average FE of the M2 design was 59.1 mpg i.e.,
the M2 design had average FE of 2.1% and 9.9%
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higher as compared to the M1-NEDC and M1-
HWFET designs respectively, but had 1.3%,
0.2% and 0.8% lower average FE as compared to
the M1-FTP, M1-LA92 and M1-US06 designs
respectively.
Standard deviations of FE of the M1-NEDC, M1-
FTP, M1-LA92, M1-HWFET and M1-US06
designs were 7.8 mpg, 7.2 mpg, 7.8 mpg, 5.9
mpg and 6.3 mpg respectively, whereas the
standard deviation of FE of the M2 design was
5.3 mpg.
The variation in FE of the M1-NEDC, M1-FTP,
M1-LA92, M1-HWFET and M1-US06 designs
were 0.135, 0.121, 0.131, 0.110 and 0.106
respectively, whereas the variation in FE of the
M2 design was 0.090. Therefore, the M2 design
had lower variation in FE by 33.3%, 25.6%,
31.3%, 18.2% and 15.1% as compared to the
M1-NEDC, M1-FTP, M1-LA92, M1-HWFET
and M1-US06 designs respectively.
The minimum FE value of the M2 design for the
ten driving patterns was 51.0 mpg over the D3
and D6. The minimum FE values of the M1-
HWFET were 47.1 mpg over the D1, whereas the
minimum FE values of the M1-NEDC, M1-FTP,
M1-LA92 and M1-US06 were 46.3 mpg, 49.2
mpg, 47.4 mpg and 50.0 mpg respectively over
the D6. Therefore, the M2 design improved the
minimum FE by 10.2%, 3.7%, 7.6%, 8.3% and
2.0% as compared to the M1-NEDC, M1-FTP,
M1-LA92, M1-HWFET and M1-US06 designs
respectively.
The above results clearly showed that the M2
design had lower variation in FE as compared to
all optimum designs of the Method 1 and the
reduction of variation in FE could be from 15.1%
to up to 33.3%. Though the M2 design had 1.3%,
0.2% and 0.8% lower average FE as compared
to the M1-FTP, M1-LA92 and M1-US06 designs
respectively, the lower variation in FE of the M2
design by 25.6%, 31.3% and 15.1% as compared
to the M1-FTP, M1-LA92 and M1-US06 made
the M2 design potentially less sensitive to
variation in driving patterns and higher minimum
FE of the M2 design by 3.7%, 7.6% and 2.0% as
compared to the M1-FTP, M1-LA92 and M1-
US06 showed the potential improvement of the
M2 design even under the condition of least FE.
Therefore, even though the M2 design had
marginally lower average FE as compared to the
M1-FTP, M1-LA92 and M1-US06, the M2
design has the potential to have higher FE as
compared to the M1-FTP, M1-LA92 and M1-
US06 under varying driving patterns in the real-
world.

5 Conclusions
The methodology of powertrain component sizing
of HEVs based on a range of driving patterns has
been investigated for ten real world driving
patterns over a predefined route consisting of
urban as well as highway driving. The
methodology (Method 2) demonstrated the
potential to reduce variation in FE by up to 33%
with comparable average FE over ten real world
driving patterns as compared to the conventional
methodology (Method 1). The potential of the
methodology (Method 2) to reduce variation in FE
indicates its potential applicability in real world
application.

6 Future work
Exhaust emissions and component cost will be
considered along with FE. The proposed
methodology will also be evaluated for
simultaneous optimisation of powertrain
components and supervisory control strategy
parameters.
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