
EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  1

EVS27 

Barcelona, Spain, November 17-20, 2013 

An Approach to an Optimal Design of Permanent Magnet 

Synchronous Machines for Battery Electric Vehicles 

Alexander Kreim
1
, Uwe Schäfer

2 

1,2 
Berlin Institute of Technology, Electric Drives Group, Secr. EM4, Einsteinufer 11, 10587 Berlin, Germany 

1
alexander.kreim@tu-berlin.de 

 

Abstract 

The described design of a permanent magnet synchronous motor for battery electric vehicles is based on a 

drive cycle. For a given vehicle a set of operating points of the electric machine can be derived from the 

cycle. The next step in the design of the traction motor is to find a suitable lamination layout. Common 

motor design procedures take only a few representative operating points into account. This paper describes 

an approach which includes a large number of operating points at early stages of the motor design process. 

It is based on a specialized motor model and an optimization strategy which are described in this paper. As 

an example a traction motor for the VW Golf CityStromer is designed by using the proposed method.  

Keywords: permanent magnet synchronous machine, optimization, battery electric vehicle 

1 Introduction 
In this paper an approach to the design of the 

electric traction motor of a battery electric vehicle 

is described. As an example the design process is 

demonstrated for a permanent magnet 

synchronous machine (PMSM) used in a VW 

Golf CityStromer [1]. Input of the design is a 

drive cycle measured during a trip from Berlin-

Centre to a suburban location. A car having a 

75 kW combustion engine was used to measure 

the cycle. The design goal is to find an optimal 

lamination layout for the given drive cycle. An 

example for a lamination layout is shown in fig. 5. 

Since the space inside the CityStromer is limited, 

the new motor has to have the same size as the 

original motor. Especially the outer diameter is set 

constant in this paper. 

The electric machine is operated at different 

torque and rotational speeds. Each operating point 

of the electric machine is defined by a certain 

torque Top and speed nop. These points depend on 

the drive cycle and the battery electric vehicle 

itself [8]. The distribution of the operating points 

in the torque speed plane is shown in fig. 1. Each 

point is marked by a black cross. The red line 

indicates the desired maximum torque of the new 

motor. 
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Figure 1: Distribution of operating points 
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Figure 2: Comparison of lamination designs for 

different operating points (black: 52 Nm / 3800 rpm; 

green: 20 Nm / 5400 rpm) 

An electric machine designer has to define the 

parameters of a lamination layout as it is shown in 

figure 5.  

If the electric machine is optimized for a single 

point of operation this design may not be suitable 

for the whole set of operating points. For example 

figure 2 shows a comparison of two lamination 

designs which are determined by the optimization 

algorithm described in section 4. Each 

optimization has been carried out for a single 

operating point. The first operating point is given 

by Top = 52 Nm and nop = 3800 rpm and the 

second by Top = 20 Nm and nop = 5400 rpm. 

Normally there are many operating points in the 

torque speed plane. State of the art design tools, 

such as the finite element method, need 

computational effort. Including all points of 

operation would end in a very time consuming 

process. There are methods which allow to reduce 

the number of points by choosing a limited 

number of representative points  [7]. These 

methods are typically based on the energy 

consumption. The torque speed plane is roughly 

divided into a small number of areas and for each 

area an representative operating point is 

calculated similar to the procedure described in 

section 2. The number of regions is limited due to 

the computational effort. 

In this paper an approach is presented which 

allows taking a large number of operating points 

into account. The computational effort is reduced 

by using a specialized motor model in 

combination with an optimization algorithm. This 

can be used to divide the torque speed plane into a 

larger number of areas. 

2 Relative energy throughput 
In a first step the motoring area of the torque 

speed plane is divided into 15 x 15 tiles. 
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Figure 3: Relative energy throughput 

For each tile the total energy throughput is 

computed. The energy throughput of the ith 

operating point is given by 

 

, , ,2op i op i op iE n T t= ⋅ π ⋅ ⋅ ⋅ ∆    (1) 

In which ∆t is the time increment used in the drive 

cycle measurement. The energy throughput of the 

kth tile is the sum of the energies of the operating 

points lying inside the corresponding tile.  

, ,tile k op i

i

E E=∑     (2) 

,min, , ,max,tile k op i tile kn n n≤ <
   

(3) 

,min, , ,max,tile k op i tile kT T T≤ <
   

(4) 

The total energy throughput in motoring mode is 

equal to the sum of energy throughputs of all 

operating points in motoring mode.  

, ,tot mot op i

i

E E=∑     (5) 

, , 0op i op iT n ≥     (6) 

The relative energy throughput of a tile is given 

by 

 

,

,

tile k

k

tot mot

E
e

E
=

.
    (7) 

The relative energy throughput of the tiles is 

shown in fig. 3. Each tile is represented by an 

operating point which is located in the centre of a 

tile. 

3 Modelling the PMSM 
On the one hand the model of the permanent 

magnet machine must be developed such that it 

needs little computational effort. On the other 

hand it must include all physical effects which are 

playing an important role in the machine design.  
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Figure 4: Fundamental phasor diagram 

The model of the PMSM is based on the 

fundamental wave phasor diagram expressed in 

the direct and quadrature axis coordinate system 

(see fig. 4).  

The parameters are the phase resistance R1, the 

direct and quadrature axis inductances Ld and Lq, 

and the magnet flux linkage Ψpm. The components 

of the current vector are the direct- and 

quadrature-axis current. 

d qI I I =  
�

 2 2 2

d qI I I= +  (8) 

The components of the voltage vector are the 

direct- and quadrature-axis voltages. 

d qU U U =  
�

 2 2 2

d qU U U= +  (9) 

Accounting for the optimization process, the 

model is chosen such that the dependency of the 

torque Tshaft, the phase voltage U
�

 and the total 

losses Ploss on the current vector I
�

is expressed by 

quadratic functions. 

( ), T T

loss loss loss loss
P I I Q I I g cΓ = + +

� � � � �

 (10) 

( ), T T

shaft t t t
T I I Q I I g cΓ = + +

� � � � �

 
(11) 

( )2 , T T

u u u
U I I Q I I g cΓ = + +
� � � � �

 
(12) 

The matrices Qloss, Qt and Qu are 2 x 2 matrices 

while gloss, gt and gu are 2 x 1 vectors. The matrix 

Qloss is positive definite. The elements of Qloss, Qt 

and Qu as well as gloss, gt and gu are functions of 

the parameters R1, Ld, Lq and Ψpm (see 

section 8.1). The model is extended by a simple 

iron loss model which is based on the Steinmetz 

equation. 
2 2

0 0 0

iron hyst ed

f f B
p

f f B

     
= σ ⋅ + σ          

 (13) 

The parameter σhyst is the hysteresis loss 

coefficient and σed is the eddy current loss 

coefficient. The frequency f is the electric 

frequency and B is the local flux density. 

Normally the dependency of the hysteresis losses 

on the flux density is not quadratic. Typical 

exponents of B in the hysteresis loss term are in 

the range from 1.5 to 1.8. Since the model should 

have a quadratic behaviour an exponent of 2 is 

chosen. The iron losses in the stator tooth Piron,t 

and rotor yoke Piron,y are treated separately and are 

derived from (13). 

3.1 Basic layout 

To determine the connection between the 

parameters of the phasor diagram and the 

geometric parameters of a lamination an initial 

lamination layout must be chosen by the designer. 

The chosen lamination layout is shown in fig. 5. 

This lamination allows an analytical calculation of 

the parameters R1, Ld, Lq and Ψpm, which is 

important for the processing time. This choice 

does not limit the results of the optimization to the 

chosen lamination as described in section 6. 

Typically the magnetic characteristic of a 

lamination does not depend on absolute values but 

on a set of ratios of geometric parameters. 

Therefore, the following ratios are defined: 

hm

m
h

δ

δ
α =  t

zn

s

b
α =

τ
 (14) 

1
2

s
hn

h

r rδ

α =
δ

− −

  (15) 

The parameter τs is the slot pitch. 

The lamination parameters are collected in the 

parameter vector Γ
�

: 

 
T

q i hm zn hnrδ δ
 Γ = δ δ α α α α 

�

 (16) 

 

The dependencies of R1, Ld, Lq and Ψpm on Γ
�

 are 

expressed by analytic functions as far as possible. 

This allows calculating the gradients of these 

functions. They are used in the optimization 

process. 

 

Figure 5: Basic lamination parameters 
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3.2 Permanent magnet flux linkage 

For an analytical calculation of the permanent 

magnet flux linkage a simplified model is used. 

The relative permeability of all iron parts is set to 

infinity. The effective magnetic air gap ′δ  is set 

to a constant value. Considering these 

simplifications, the permanent magnet flux 

linkage can be calculated in different ways. All 

presented possibilities are based on the radial 

component of the magnet flux density in the air 

gap. The fundamental wave form of the air gap 

flux density is 

( ) ( )ˆ cosB B pδ δα = α .    (17) 

The angular position on the rotor is represented by 

α. According to the coil pitch the air gap flux 

density is integrated along the circumference to 

evaluate the permanent magnet flux linkage. For 

this purpose the peak value B̂δ  must be known. 

The easiest way to calculate the air gap flux 

density is to assume a rectangular dependency of 

the flux density on the rotor position. The flux 

density reaches its maximum value in the magnet 

area and is set to zero in the magnet gap. In this 

case the peak value of the fundamental flux 

density distribution caused by the magnets can be 

calculated by using the load line. 

,load line

4ˆ sin
2

1

r
i

m

m

B
B

h

δ

π 
= α δπ  + µ

  (18) 

The magnet is specified by its remanent flux 

density Br and the recoil permeability µm. 

The second possibility is solving the Laplace 

equation. The solution is derived similar to [11]. 

First the magnetization of the permanent magnets 

is described by a Fourier series. 

( ) ( )
1,3,5,

ˆ cosn

n

M M n p
∞

=

α = ⋅ ⋅ α∑
…

 (19) 

ˆ4ˆ sin
2

n i

M
M n

n

π 
= ⋅ α 

π    
The fundamental component of the flux density in 

the middle of the air gap is given by 

( ) ( )1 1 1

,Lapace 0
ˆ ˆ, p p p

l i hmi hm
B A M

− + +
δ δ δ= −µ Γ ⋅ α ⋅α + α

�

      
with (see fig 5)    (20) 

2

i

r

r

δ
δ

δ

α =
δ

+

 2

2

hmi

r

r

δ

δ

δ
−

α =
δ

+

 (21) 

2
hm

r

r

δ

δ

δ

δ
−

α =   (22) 
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Figure 6: Comparison of air gap flux densities 

(excitation by magnets) 

 

The number of pole pairs p must exceed one. The 

dependency of the factor Al on Γ
�

 is given in the 

appendix. 

Since the magnetic air gap is not constant, 

assuming a constant air gap leads to an error in 

the fundamental waveform of the magnet flux 

linkage. Therefore the peak value of the air gap 

flux density for a non constant air gap is 

compared to ,LaplaceB̂δ  and ,load lineB̂δ . The reference 

air gap flux density is calculated by the finite 

element method. A slotless stator is assumed and 

the relative permeability in the soft iron parts is 

set to infinity.  

Figure 6 shows the comparison. Since  the 

fundamental waveform of the solution of the 

Laplace equation is closer to the finite element 

waveform this model is chosen.  

 

3.3 Inductances 

The synchronous inductance is the ratio of the 

phase flux linkage divided by the phase current 

when all phases are powered by a symmetric three 

phase current. The field of the magnets is 

removed by setting its coercive field strength to 

zero. 

To find an analytical model for the direct-axis 

inductance a reference air gap flux density is 

computed by using the finite element method. The 

finite element model consists of a slotless stator 

and a sine distributed winding. The relative 

permeability of all iron parts is set to infinity. The 

winding is powered by a direct-axis current. 

Figure 7 shows the air gap flux density in the 

middle of the air gap (black line).  
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Figure 7: Air gap flux density caused by d-axis current 

The  magnet is located in the angular position 

from -60 deg. elec.  to 60 deg. elec. Inside this 

region the magnetic effective air gap is 

1
m

m

h
δ = δ +

µ
.    (23) 

In the magnet gap regions the magnetic effective 

air gap is smaller than in the magnet region. 

2 qδ = δ + δ     (24) 

By using the rotating field theory [9] the 

fundamental air gap flux density for each air gap 

can be computed. It is assumed, that the air gap 

flux density for δ1 is valid in the magnet region 

and the air gap flux density for δ2 is valid in the 

magnet gap region. The blue line in fig. 7 shows 

the resulting air gap flux density. 

This leads to the definition of two inductances: 
2

0 1

1 2

1

2
3

fe p

h

r l w
L

p

δµ ξ
=

δ π
.   (25) 

2

0 1 1
2 12

2 2

2
3

fe p

h h

r l w
L L

p

δµ ξ δ
= =

δ π δ
  (26) 

The air gap direct-axis inductance is given by a 

weighted sum of Lh1 and Lh2. 

( )1 1 2 2

2
hd h d h d

L L k L k= +
π

   (27) 

( )1

1
sin

2 2
d i i

k
π

= α + α π    (28) 

( ) ( )2

1
1 sin

2 2
d i i

k
π

= − α − α π .  (29) 

The stack length is referred to as lfe and w1 is the 

number of turns per phase. The parameter ξp is the 

fundamental winding factor. 

The air gap quadrature-axis inductance is 

calculated in a similar manner 

( )1 1 2 2

2
hq h q h q

L L k L k= +
π

   (30) 

( ) ( )1

1
1 sin

2 2
q l l

k
π

= − α − α π   (31) 

( )2

1
sin

2 2
d l l

k
π

= α + α π    (32) 

1
l i

α = − α     (33) 

Besides the air gap direct- and quadrature-axis 

inductances the slot leakage inductance Lσs and 

the differential inductance due to a non sinusoidal 

winding distribution are also included in the 

model. The differential leakage inductance Lσd is 

modelled by a leakage coefficient σd which is 

derived from the Görges diagram [10]. 

,d d d hdL Lσ = σ ⋅     (34) 

,d q d hqL Lσ = σ ⋅     (35) 

The total direct- and quadrature-axis inductances 

are 

( )1d d hd sL L Lσ= σ + ⋅ +    (36) 

( )1q d hq sL L Lσ= σ + ⋅ + .   (37) 

3.4 Saturation Model 

Here only the saturation due to the permanent 

magnet field is taken into account. In this case the 

saturation depends only on the parameter vector 

Γ
�

. The saturation is modelled by an enlarged air 

gap δsat. Starting point for calculating δsat is 

ampere’s law for the no current situation: 

 

0m m t t y yH H h H h H hδ ⋅ δ + ⋅ + ⋅ + ⋅ =  (38) 

Hδ magnetic field strength in the air gap 

Hm magnetic field strength in the magnet 

Ht stator tooth magnetic field strength 

Hy stator yoke magnetic field strength 

 

By using δsat ampere’s law (38) simplifies to 

 

0
sat m m

H H hδ ⋅ δ + ⋅ =  (39) 

 

Equating (38) and (39) leads to an equation for 

δsat which is solved numerically. The magnetic 

fields Hδ, Hm, Ht, and Hy can be calculated from 

the flux linkage Ψpm. The relative permeability of 

the stator teeth and yoke is not a constant and 

given by the magnetization curve of the used 

magnetic steel. In order to reduce the 

computational effort a simple model of the 

magnetic steel can be used [3]. 

 

( )2
2

1 3
hbk B

hb hbH k e k B= + ⋅    (40) 
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3.5 Model validation 

The results of the analytical model are compared 

to a static finite element analysis (FEA). The 

comparison is done for the operating point 

Top = 52 Nm and nop = 3800 rpm and the 

optimized lamination layout given in table 2. The 

nonlinear behaviour of the electric steel is 

computed by using (40) and included into the 

finite element analysis. For calculating the 

inductances the fixed permeability method 

described in [2] and [5] is used. The comparison 

is shown in table 1. The values given for the finite 

element calculation are mean values.  

3.6 Reduced parameters and per unit 

system 

The goal of the presented design process is 

finding suitable values for the parameter vector Γ
�

 

which minimizes the total losses for a given drive 

cycle. By Γ
�

 a lamination design is defined. A 

lamination is two dimensional and different 

windings can be inserted. The number of turns per 

phase or the stack length does not influence the 

flux densities in the magnetic circuit of the 

electric machine. The characteristic of the 

magnetic circuit is controlled by the lamination 

design. To account for this fact a reduced 

parameter set is introduced: 

1
1 2

1 fe

R
R

w l
′ =     (41) 

,

, 2

1

d q

d q

fe

L
L

w l
′ =     (42) 

1

pm

pm

few l

Ψ
′Ψ =     (43) 

, 1 ,d q d qI w I′ = ⋅     (44) 

Expressing the losses Ploss and the torque Tshaft by 

the reduced parameters leads to a formula for the 

reduced torque and reduced losses. 

shaft

shaft

fe

T
T

l
′ =     (45) 

loss
loss

fe

P
P

l
′ =     (46) 

In a second step the model is normalized by 

defining a reference current Ib, a reference flux 

linkage Ψb, a reference radius rB and a reference 

iron loss parameter kub. The iron loss parameter 

describes the dependency of the iron losses on the 

frequency and the parameter vector Γ
�

 (see 

section 8.1). The resulting normalized parameters 

are marked by a Π.  

Table 1: Comparison of the analytic model to a finite 

element analysis (FEA) 

 analytic 

PMSM-

Modell FEA 

Fundamental 

magnet flux linkage 
ˆ

pmψ  
94.56 mVs 98.11 mVs 

Open circuit stator 

tooth flux density 
1.757 T 1.761 T 

Open circuit stator 

yoke flux density 
1.388 T 1.387 T 

Shaft torque Tshaft 52 Nm 51.7 Nm 

Direct-axis 

inductance Ld 
0.4657 mH 0.4774 mH 

Quadrature-axis 

inductance Lq 
0.7906 mH 0.7529 mH 

 

2

loss
ploss

ub b

P

k

′
Π =

Ψ
    (47) 

shaft

tshaft

b b

T

I

′
Π =

Ψ
    (48) 

The optimization is carried out for the normalized 

system. All operating points have also to be 

normalized. 

4 Optimization process 
The optimization process consists of an inner and 

outer optimization step.  

4.1 Inner optimization step 

The inner optimization is carried out for each 

operating point. Here the parameter vector Γ
�

 is 

constant. It implements a minimum loss strategy. 

The optimization variables are the components of 

the current vector I
�

. 

 

Figure 8: Inner optimization 
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( )( ),min, ,min ,
i

loss i loss i i
I

P P I= Γ
�

� �

  (49) 

subject to  ( ), ,
,

shaft i i op i
T I TΓ =

� �

 (50) 

  ( )2 2

max,
,

i i i
U I UΓ ≤
� �

 (51) 

 

The first constraint (50) ensures that the torque 

after the optimization is equal to the torque of the 

current operating point i. The inequality constraint 

(51) corresponds to the voltage limit. The 

dependencies of the losses, the torque and the 

square of the voltage on the current vector are 

quadratic functions as explained in section 3. The 

constant torque lines in the current plane are 

hyperbolas. If one reaches one branch of the 

hyperbola the optimization problem has a unique 

solution or no solution. In the case no solution is 

found, the voltage limit is increased until there is 

a solution. Consequently the maximum voltage 

constrained does not necessarily hold for the 

corresponding operating point. This must be 

handled by the outer optimization. 

By the inner optimization the functions Ploss,min,i, 

Tshaft,min,i and 2

min,iU  are implicitly defined (see also 

equations (10), (11) and (12)). 

( )i i
I f= Γ
� �

 (52) 

( )( ),min, , ,loss i loss i iP P I= Γ Γ
� � �

  (53) 

( )( ),min, , ,shaft i shaft i iT T I= Γ Γ
� � �

 (54) 

( )( )2 2

min, ,i i iU U I= Γ Γ
� � �

 (55) 

For each operating point the gradient of the losses 

Ploss,min,i with respect to Γ
�

 for a constant torque 

Tshaft has to be calculated. This information is 

needed for the outer optimization. Since Ploss,min,i 

itself is the result of the first optimization step 

which is carried out numerically, no analytic 

solution exists. But the dependency of the 

parameters R1, Ld, Lq and Ψpm on Γ
�

is given by 

analytic equations (see section 2). This allows to 

calculate the derivative of Ploss,i with respect to Γ
�

 

for a constant current vector I
�

 and the derivative 

of Ploss,i with respect to I
�

 for a constant 

parameter vector Γ
�

. The gradient of Ploss,min,i for a 

constant shaft torque can be expressed by the 

derivatives of Ploss,i and the Jacobian matrix Jt,i for 

constant shaft torque. 

,

,

shaft i

i
t i

T

I
J

∂
=

∂Γ

�

�  (56) 

,

,min, , ,

shaft i

T

loss i loss i loss i

i

T I

P P P
J

I
Γ

∂ ∂ ∂
= ⋅ +

∂Γ ∂ ∂Γ� �

� � �   (57) 

Due to constraint (50) the current vector 
i

I
�

 is 

determined such that the shaft torque does not 

depend on Γ
�

. Therefore the gradient of the shaft 

torque with respect to Γ
�

 is zero. 

,

,min,
0

shaft i

shaft i

T

T∂
=

∂Γ
�   (58) 

 

,

,min, , ,

,

shaft i

T

shaft i shaft i shaft i

t i

T I

T T T
J

I
Γ

∂ ∂ ∂
= ⋅ +

∂Γ ∂ ∂Γ� �

� � �  (59) 

The Jacobi matrix Jt,i is calculated numerically. 

Equation (58) offers the possibility to measure the 

error of the numerical calculation. The gradient of 

the shaft torque is calculated by (59). If the 

absolute value of the result is larger than a small 

threshold value the results are assumed to be 

incorrect. 

Since the outer optimization is based on the 

results of the inner optimization it is important 

that the inner optimization is reliable and fast. For 

this reason the model of the permanent magnet 

synchronous machine is limited to quadratic 

models with respect to the current vector I
�

. 

4.2 Outer optimization step 

The optimization variables of the outer 

optimization steps are the components of the 

parameter vector Γ
�

. The target function is the 

weighted sum of losses of the operating points. 

, ,min,loss tot i loss i

i

P w P= ⋅∑   (60) 

1i

i

w =∑   (61) 

The gradient of the target function with respect to  

Γ
�

 is calculated by using (57). In this paper the 

operating points used in the optimization 

correspond to the tiles centres as described in 

section 2. The weights are the relative energy 

throughput of each tile. 

The formulation of the outer optimization 

problem is: 

( )( ), ,minloss opt loss totP P
Γ

= Γ
�

�

 (62) 

subject to  2 2

maxi
I I≤  (63) 

  

2 2

min, maxiU U≤  (64) 
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Figure 9: Outer optimization 

 

Now the current limit is added to the optimization 

process. The voltage inequality constrained 

appears in the inner and outer optimization loop. 

Additional constraints can be added to ensure that 

the elements of the parameter vector Γ
�

 stay 

inside a reasonable range. 

4.3 Optimization algorithm 

The inner and outer optimization uses the same 

nonlinear optimization algorithm. The algorithm 

was described in [6]. It is based on an exact 

penalty function and belongs to the class of trust 

region optimization algorithms [4]. By using an 

exact penalty function the constrained 

optimization is transferred into a non constraint 

optimization. Therefore the objective and the 

constraints are combined into a new objective. 

The optimization algorithm uses gradients of the 

objective and constraints. The gradients are used 

to build a quadratic model of the exact penalty 

function around the current iteration. It is assumed 

that this model is valid inside a given trust region 

radius. This radius is controlled by the algorithm. 

The model is used to forecast a reduction in the 

penalty function when the parameter vector Γ
�

 is 

updated to a new value. If the predicted reduction 

is not close to the decrease of the penalty function 

the trust region radius is reduced. If the model and 

the penalty function agree well, the trust region 

radius is enlarged. More detailed explanations on 

trust region optimization algorithms can be found 

in [4]. 

Using an exact penalty function allows initial 

values of the parameter vector Γ
�

 which do not 

satisfy the constraints. For example the initial 

parameter vector could be chosen such that the 

voltage constraint (64) is not achieved for all 

operating points at the beginning of the 

optimization. On the other hand it must be 

ensured that the values of the parameter vector Γ
�

 

stay inside a meaningful range and the model can 

be validated. 

5 Results 
The optimization has been carried out for 80 

operating points. Each operating point 

corresponds to a tile centre as described in section 

2. Their position in the torque speed plane is 

marked by a red cross in fig. 10. The points are 

chosen according to their energy throughput. By 

using 80 points 85% of the total energy 

throughput in motoring operation is covered. The 

average torque is 39.8 Nm and the average 

rotational speed is 3935 rpm. The average values 

are calculated by using the relative energy 

throughputs of each tile (see equation (65)).  
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Figure 10: Operating points included in the 

optimization 
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Figure 11: Comparison of the lamination layout before 

(black line) and after (red line) the optimization 

 

,avg i op i

i

T e T= ⋅∑  ,avg i op i

i

n e n= ⋅∑  (65) 

The initial lamination and the final layout after the 

optimization are shown in fig. 11. For both 

layouts the weighted sum of copper losses Pcu,cycle 

and iron losses Pfe,cycle are calculated (see table 2).  

, ,cu cycle i cu i

i

P e P= ⋅∑    (66) 

, ,fe cycle i fe i

i

P e P= ⋅∑    (67) 

The minimization of the normalized losses during 

the optimization process is shown in fig. 12. The 

overall cycle losses are reduced by 11.8% of the 

initial losses. 

The average torque of the cycle is approximately 

half of the maximum desired torque. Hence the 

copper losses are the dominant losses. To reduce 

these losses the optimization algorithm increases 

the slot area. This results in a small stator tooth 

width and high flux densities in the stator tooth. 

Because of this it is important to include 

saturation into the model of the permanent magnet 

 

Table 2: Optimization results 

 initial 

lamination 

optimized 

lamination 

Pcu,cycle 768.07 W 594.5 W 

Pfe,cycle 156.36 W 220.1 W 

αi 0.6666 0.6369 

αδhm 0.3988 0.3000 

αzn 0.3659 0.4056 

αhn 0.6385 0.8003 

sat
δ δ  1.37 1.24 

ˆ
pmΨ  97.97 mVs 94.46 mVs 

q dL L  1.5814 1.6977 
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Figure 12: Reduction of the normalized total cycle 

losses 

synchronous machine. A lower limit of the stator 

tooth is given by saturation effects. Since the flux 

density in the stator tooth is limited by the 

magnetization curve of the electric steel a very 

small tooth width would lead to a reduced 

permanent magnet flux and this would increase 

the copper losses. 

As it can be seen from the load line equation (18) 

and (14) a small value of αδhm leads to high air 

gap flux densities and to an increased permanent 

magnet flux linkage. This also decreases the 

copper losses. A small value of αδhm results in a 

large magnet height hm, especially if there is a 

lower limit for the air gap. An important design 

goal is to minimize the used magnet volume. 

Therefore an lower limit αdhm,min = 0.3 is included 

in the optimization. This limit is chosen such that 

there is no danger of demagnetization of the 

magnets. Due to manufacturing tolerances a lower 

air gap limit is also introduced. Additionally for 

surface mounted magnets a rotor tape may be 

used which requires a minimum air gap. 

6 Further steps 
In the previous sections it has been described how 

the distribution of operating points in the torque 

speed plane can be matched to the parameters of a 

lamination. Due to processing time a specialized 

model was used which is based on the lamination 

shown in fig. 5. This lamination layout may not 

be the desired final layout. This leads to the 

question how the results can be transferred to a 

different lamination. Most magnetic circuits of 

permanent magnet synchronous machines can be 

described by the parameters Ld, Lq and Ψpm. 

Suitable values for these parameters have been 

found by the optimization described in the 
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previous section. These values are referred to as 

Ld1, Lq1 and Ψpm1. Their values are directly related 

to the given drive cycle. The permanent magnet 

flux linkage and the inductances depend on the 

parameters ′Γ
�

 of the desired lamination and the 

current vector I
�

. For the ith operating point three 

error functions could be defined: 

( )
( )

2

,

,

,1

,
, 1

pm i i

i i

pm

I
e IΨ

 ′ ′Ψ Γ
′Γ = −

 ′Ψ
 

� �

� �

  (68) 

( )
( )

2

,

,1

,
, 1

d i

Ld i i

d

L I
e I

L

 ′ ′Γ
′Γ = −

 ′
 

� �

� �

  (69) 

( )
( )

2

,

,1

,
, 1

q i

Lq i i

q

L I
e I

L

 ′ ′Γ
′Γ = −

 ′
 

� �

� �

  (70) 

This allows defining an objective for a second 

optimization. 

( ) ( )0 , , ,, , ,tot n i Ld i Lq i

i

e I I e e eΨ
′Γ = + +∑
� � �

…  (71) 

1, ,i n= …  

The number of operating points n can be limited 

to a few representative points. This allows the 

usage of more detailed models. The formulation 

of second optimization is 

( )
0

0
, , ,
min , , ,

n

tot n
I I

e I I
′Γ

′Γ
� � �

…

� � �

…    (72) 

subject to  ( ), ,
,

shaft i i op i
T I T′ ′Γ =

� �

 (73) 

 
maxi

I I′ ′<
�

  (74) 

 
maxi

U U′ ′<
�

  (75) 

7 Conclusion 
In the previous sections an optimization process is 

described which allows to find optimal parameter 

values of a lamination layout for a given drive 

cycle. In contrast to the common methods of 

machine design for variable loads a large number 

of operating points can be included into the 

optimization. This is achieved by using a 

specialized model of the permanent magnet 

synchronous machine in combination with an 

optimization strategy. In the example given in this 

paper the overall cycle losses are reduced by 

11.8 % in comparison to the initial losses. 

8 Appendix 
Some additional formulas of the PMSM can be 

found in the following sections. 

8.1 PMSM model 

Here the formulas for calculating the matrices and 

vectors in equation (10), (11) and (12) are given. 

 

Parameters of the total loss equation (10) 
2

1 2

1

2

12

1

2
0

2
0

d u

fe

loss

d u

fe

L k
R

w l
Q

L k
R

w l

 ⋅
+ 

 =
 ⋅

+ 
  

 (76) 

( ) ˆ2 ,

0

u pm d

loss

k L
g

 Γ ω Ψ
=  
  

�

 (77) 

2ˆ

2

u pm

loss

k
c

⋅ Ψ
=     (78) 

The stack length is referred to as lfe and w1 is the 

number of turns per phase. The parameter p is the 

number of pole pairs. The loss parameter ku 

depends on the parameter vector Γ
�

 and the 

angular frequency ω.  

 

Parameters of the shaft torque equation (11) 

( )

( )

2

2

1

2

2

1

2 3

2

23

2

u d
d q

fe

t

u q

d q

fe

pk L p
L L

l w
Q

pk Lp
L L

l w

 
− − ω =

 
 − −

ω  

 (79) 

2

1

ˆ2

ˆ3

2

pm d u

fe

t

pm

L k

l w
g

p

 − Ψ
 

ω =  
Ψ 

  

 (80) 

2

2

1

ˆ
u pm

t

fe

pk
c

l w

Ψ
= −

ω
 (81) 

 

Parameters of the voltage equation (12) 

( ) ( )

( ) ( )

2 2

1 1 1

2
2

1 1 1

d d q

u

d q q

L R L R R L
Q

L R R L L R

 ω + ω −
 =
 ω − ω + 

 (82) 

2

1

ˆ2

ˆ2

pm d

u

pm

L
g

R

 ⋅ ω Ψ ⋅
=  

⋅ ω⋅ Ψ ⋅  
   (83) 

( )2ˆ

2

pm

u
c

ωΨ
=     (84) 
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8.2 Permanent magnet flux linkage 

Additional formulas for calculating Al (see 

section 3.2) 

 

1 2

3

M
l

k C k A
A

k

+
=  (85) 

( )2

ˆ4
sin( )

21
i

r

M
C

p

π
= α

π⋅µ −
 (86)

 

ˆ4
sin( )

2
i

M
M

π
= α

π
 (87) 

( )
( )

3 6 3 1 4

5 3 2 4

r

M

r

M k C k k p k k
A

p k k p k k

⋅ − µ − ⋅
=

µ − ⋅
 (88) 

1

1
1 p

mhm
k += − α

 

2 2

2

p p

hmi mi
k = α − α  (89) 

2

3
1p

hmi
k = α −

 

2

4
1p

hmi
k = α +  (90) 

( )2 2

5 1
p p

mhi mhmk = α + α
 

1

6
1 p

mhm
k p += + α  (91) 

1
1

1

2
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rδ
δ

α = −


α − 
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  (92) 

1 1

2

2
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mi

r

r

δ

δ

δ


− δ + 

α α =
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+

  (93) 
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