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Abstract 

To fulfil lifetime requirements of a HV-Battery by simultaneously keeping drive performance it is 

indispensable to well-suit the BMS application. Therefore, knowledge of battery aging and the change of 

the battery model parameters in time are mandatory. Introducing a real time Li-Ion battery model, this 

article issues the topic of parameter identification and which kind of optimization method fits the best to 

the optimization problem on hand for stable and fast parameter identification. 
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1 Introduction 
Considering battery aging, it is a challenge to an 

Electric-/ Hybrid-Vehicle’s Battery Management 

System (BMS) to guarantee the lifetime 

requirement of 10 to 15 years. For this purpose 

aging tests are done to get knowledge about the 

mechanisms of calendric and cyclic aging with 

the goal to derive models describing this 

behaviour. After that, an existing electro-thermal 

battery model at Begin of Life (BOL) can be 

extended to the influence of aging. Such a model 

allows long term offline simulation until a certain 

End of Life (EOL) criterion to determine the best 

BMS application to a specific operation strategy. 

To reach this final model state, many 

investigations have to be performed usually in 

connection with the issue of parameter 

identification. Therefore, parameter identification 

of an electrical battery model is a fundamental 

topic. These parameters are extracted from 

measured data using a well-defined 

parameterization test. In reference to aging, it is 

important to learn how model parameters change 

in time. For this purpose, aging tests are 

interrupted at specified states to perform 

parameterization tests.  

 

Introducing a battery model for automotive 

purposes, this article shows the history of how an 

optimization algorithm was found for the given 

optimization problem on hand and knowledge 

gained therein. Parameterization tests and existing 

connection to parameter identification are not 

issued but will be discussed in more detail in a 

separate paper. 

 

This paper is structured as follows. Sections two 

and three give insight in the modelling approach 

and mathematical description. Section four issues 

the steps from a general to an optimization 

problem specific parameter identification method.  

 

2 Modelling Approach 
A very common technique for battery state 

description is impedance spectroscopy (EIS). 

Figure 1 shows an example of a battery’s 

impedance curve. 
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Figure 1: Example of an impedance curve [3] 

A typical diffusion characteristic is the line for 

lower frequencies. A value, which represents 

diffusion processes within a cell, is the so called 

Warburg Impedance and is defined for Laplace 

domain only. Sometimes a Constant Phase 

Element (CPE) is used instead of the Warburg 

impedance. In literature, Li-Ion battery models in 

Laplace- or Fourier domain description can be 

found frequently. Depending on assumptions like 

flat or porous electrodes [1, 2], the models are 

more or less complex. Nevertheless, a wide 

spread approach to battery modelling is the use 

of Equivalent Electric Circuits (EEC). Figure 2 

shows an example of a possible EEC model. It 

consists of an ohmic resistance ��, a RC pair 

and the Warburg impedance ����� in series. The 

RC pair describes double layer capacity �	
 and 

transfer resistance ��� effects within a battery 

cell. 

 

For automotive applications it is crucial to find 

model approaches that can be computed online 

on control units. This excludes models in Laplace 

domain. So the mathematical description of 

Warburg impedance in time domain is the only 

problem that prevents the usage of EEC so far. 

Possible solutions are presented in [3] by 

introducing Cauer- and Foster Networks to 

model the diffusion process, Figure 3 and Figure 

4. 

 

 

 

 

Figure 2: Equivalent Electric Circuit model in Laplace 

space including Warburg Impedance Zw(s) [3] 

 

Figure 3: Example using a Foster Network [3] 

 

Figure 4: Example using a Cauer Network [3] 

Through simple usage of several RC-pairs, it is 

possible to fit the model to measured EIS curve as 

close as necessary. Figure 5 shows such a fit and 

reveals that it is a free choice which kind of 

network to use as Cauer and Foster curves 

coincide. However, in this paper a Foster Network 

is preferred. In conclusion, the modelling approach 

is an EEC consisting of an Open Circuit Voltage 

(OCV), an ohmic resistance � and several RC 

pairs (��||��) in series, see Figure 6.  

 

It is very important to highlight that building up a 

battery model for simulation in respect to 

automotive purposes, there is a difference to EIS 

curve modelling. As EIS is a description of small 

signal behaviour (criterions for linearity are not 

hurt) some interpretation of model parameters to 

physical phenomena like double layer capacity etc. 

is allowed. The model introduced in this paper is a 

description of large signal behaviour of a highly 

nonlinear system. For this reason, value 

interpretation is hardly possible. 

 

As the presented approach is valid for a single cell 

as well as a battery pack, within this paper the term 

“cell” also represents battery modelling. For 

correct understanding the contact resistances are 

usually comprised in �	. 

 

Figure 5: Comparison of Nyquist plots [3] (red-

measured, blue-fitted) 
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Figure 6: Final EEC modelling approach 

 

3 Mathematical description of a 

Li-Ion Battery Model for 

automotive purpose 
The main quantities that have influence on the 

parameters are: 

• State of Charge (���) 

• Temperature (�) 

• Current direction, i.e. charge or 

discharge (�������) and 

• Current magnitude (������) which can 

be expressed in C-Rates 

The computation of C-Rate is simple as it is 

current normalized to nominal cell capacity. 

 

From analysis of measured data, there is a model 

that sufficiently describes a cell’s voltage 

response to current input. Given a model with an 

ohmic resistance � and � RC pairs with �� and �� � ���� the parameters have following 

dependencies: 

 

• � � �����, �, �������, ������� 
• �� � �����, �, �������� 
• �� � �����, �� 

A comfortable way for mathematical description 

is the state space form. Equations (1) and (2) 

show the typical continuous state space 

formulation. 

  ! � " ∙  $ % ∙ �  (1) &' � � ∙  $ ( ∙ �  (2) 

 

For each RC-pair in Figure 6 an ordinary 

differential equation according to (3) is valid. 

 �� ∙  !� $  � � �� ∙ �  (3) 

In (3) variable  � stands for the voltage at the j-th 

capacitor and variable � stands for cell current. The 

overall voltage drop &' is the sum of the ohmic 

voltage drop & and all transient voltages (4). 

 

&' � & $) �*
�+,  

   (4) 

 

Transformation of equations (3) and (4) into (1) 

and (2) results in a state space structure with 

canonical parameterization form. The matrices are 

as follows: 

 

" � -..
/01 �,����, ��2 0 00 ⋱ 00 0 01 �*����, ��2 566

7
 " ∈ 9*:* 

 

% �
-..
...
/�,����, �, �������� �,����, ��;

⋮�*����, �, �������� �*����, ��; 566
666
7

 % ∈ 9*:, 
 � � =1 … 1?  � ∈ 9,:* 

 ( � �����, �, �������, �������  ( ∈ 9 

 

The full mathematical formulation ends up in a 

Linear Parameter Varying (LPV) system. The 

number of parameters needed to be identified is 

large and depends on the model order � as well as 

on selected nodes for temperature, SOC and C-

Rates. Furthermore, a parameterization test must 

be defined that takes all four quantities into 

account equally. For OCV measurement, specified 

temperatures and SOC nodes are run on a test 

bench. This helps to simplify the mathematical 

model for identification purpose as a 

parameterization test can follow an OCV 

measurement. So matrices A, B and D get a 

simplified structure at a certain SOC and 

temperature node: 
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" � @01 �,2 0 00 ⋱ 00 0 01 �*2 A " ∈ 9*:* 

 

% � -..
/�,��������� �,2⋮�*��������� �*2 566

7
  % ∈ 9*:, 

 ( � ���������, ������� ( ∈ 9 

 

To consider current direction, it is necessary to 

split the row current vector � in Charge (Ch) and 

Discharge (DCh) according to (5). Theoretically, 

this transformation results in a system with two 

input signals. 

 

� � B �CD�ECDF    (5) 

 

In the next step matrices B and D needed to be 

transformed to current direction dependency 

according to (6) and (7), too. 

 

% � =%CD %ECD? � @�,,CD �,2 �,,ECD �,2⋮ ⋮�*,CD �*2 �*,ECD �*2 A (6) 

 ( � =�,CD �,ECD?   (7) 

 

Finally, C-Rate dependency of ( has to be taken 

into account. Up to now no specific equation is 

known to the author that describes this 

behaviour. For this reason a linear spline function 

is chosen as a general and at the same time 

simple approach. By that, the elements of vector ( in (7) can be expressed in spline representation 

according to equations (8) and (9) 

 

�,CD � �,CD∗ ∙ H1 $)�I ∙ %�IJ
I+, K 

     (8) 

 

�,ECD � �,ECD∗ ∙ H1 $)�I ∙ %�IJ
I+, K 

     (9) 

Expression %� in (8) and (9) stands for the linear 

spline Base Function. Equation (10) defines %�. 

 %�I �L����M 0 ����MNO	MI ��	����M > ����MNO	MI0 O�ℎMR���M
     (10) 

 

Variable ����M goes with current at a certain time 

step and variable ����MNO	M is a defined C-Rate 

node. The number of C-Rate nodes is expressed by S. Within (8) and (9) �I and �I are spline 

coefficients. Table 1 gives a summary of 

parameters needed to be identified for a certain 

temperature and SOC node. The amount of 

parameters can be calculated by  T � 3 ∙ � $ 2 ∙ �S $ 1�. As an example, for a 

simple case of � � 2 and S � 4 the number of 

unknown paramters results in T � 16. 

 

Table 1: Summary of parameters needed to be identified 

time constants �, … �* 

RC gain factors �,,CD … �*,CD ;  �,,ECD … �*,ECD 

linear spline function 

coefficients  
�,CD∗  ; �, … �J ; �,ECD∗  ; �, … �J 

4 Parameter Identification 
Following subsections give insight into the 

optimization problem on hand.  

4.1 Heuristic Method 

If a new optimization problem is unknown it is 

appropriate to start with a general method for 

parameter identification to assure not getting stuck 

in a possible local minimum. For this reason, a 

heuristic method was chosen. Heuristic methods 

are working with particles, i.e. valid parameter 

sets, to search within a search space for a global 

best parameter set. These methods have more 

chances to find a global minimum between many 

local minima as all particles are spread randomly 

in a search space. This is also an advantage as no 

initial parameter values are necessary. Such 

algorithms are for instance Genetic Algorithms 

(GA) and Particle Swarm Optimizer (PSO). 

Because of its simplicity, PSO was chosen for first 

identification. The general PSO algorithm consists 

of two equations. With the velocity equation (11), 

a new velocity vector of a particle is computed. 

Therein �, �, and �Y are weighting factors. To 

give some unforeseen behaviour, two uniformly 
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distributed numbers R, and RY are included. The 

current particle position is represented by Z. 

Typical PSO characteristic is the fact that every 

particle remembers its best achieved position [. 

Additionally, there exists a global best position \ 

of all particles. 

 ]∗ � � ∙ ] $ �1R1=[ 0 Z? $ �2R2=\ 0 Z? (11) 

 

The second equation (12) updates a particle’s 

position. Both equations are illustrated in Figure 

7. 

 Z∗ � ]∗ $ Z    (12) 

 

In this work a hybrid PSO (HPSO) as proposed 

in [4] was implemented. This algorithm includes 

aspects of GA and contributes a method to 

escape a possible local minimum. The scheme is 

shown in Figure 8. Starting with a parent 

population, a child 1 generation is computed with 

PSO equations (11) and (12). In parallel a child 2 

generation is computed with Cauchy Mutation. 

This step shall help to escape a possible local 

minimum. After that, particles of the two child 

generations compete against each other in their 

fitness, i.e. the first particle of child 1 generation 

against the first particle of child 2 generation. 

This results in an offspring. Within the next step 

a new parent population is generated through a 

Natural Selection Strategy. Therefore, the old 

parent population is compared to the offspring 

generation. For more details refer to [4]. 

 

 

 

 

 

 
 

Figure 7:  Illustration of PSO equations 

 

 

Figure 9 shows a voltage response of an 

automotive cell to a discharge-charge current 

pulse. Red dashed line represents HPSO estimation 

of a battery model with � � 2 and S � 0, i.e. no 

C-Rate dependency. This example is used as 

reference for further discussion in the following 

sections. 

 

 

Figure 8: Scheme of HPSO algorithm 

 

 

Figure 9: HPSO estimated discharge/ charge pulse @ 

25°C and 50% SOC 

4.2 Grid Method 

To check if HPSO is working properly, the best 

parameter set is additionally computed by a grid 

method. According to Table 2 a grid of about 20 

million possible parameter sets is spanned across 

the defined parameter borders. 

Table 2: Parameter grid borders 

 �,,CD 	 
[mΩ] 

�,,ECD 

[mΩ] 

�Y,CD 

[mΩ] 

�Y,ECD 

[mΩ] 

�,         
[s] 

�Y         
[s] 

Min: 0,1 0,0898 0,5 0,6 1 80 

Max: 0,8 0,7184 3,7 4,6 40 176 
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For this study, the ohmic resistance was held at 

the HPSO identified value. Table 3 highlights 

that HPSO and grid method found the same 

parameter set. The slight disagreement can be 

explained by a rough grid. Resulting costs, which 

is the Sum of Squared Errors (SSE), are 

excellent. 

Table 3: Comparison of results – HPSO vs. Grid 

parameter HPSO Grid �,,CD [mΩ] 0,4003 0,4065 �,,ECD [mΩ] 03592 0,3648 �Y,CD [mΩ] 1,8263 1,8548 �Y,ECD [mΩ] 2,2911 2,3269 �, [s] 10 10 �Y [s] 147 152 

Costs (SSE) 8,9177e-4 9,1325e-4 

4.3 Sensitivity Analysis 

This study shall highlight the influence of a 

varied parameter to a cost function. Furthermore, 

it can give a hint whether HPSO is the right tool 

for this kind of optimization problem. This is 

exemplarily shown for the obtained parameter set 

illustrated in Figure 9. Except the studied 

parameter, all other parameters were held at their 

HPSO- identified values. Herein SSE is defined 

as the objective function value. The result shown 

in Figure 10 and Figure 11 highlights that for a 

given model order a unique solution exists.  

 

 

Figure 10: Sensitivity analysis  

 

Figure 11: Sensitivity analysis (sequel to Figure 10) 

It is remarkable that except a global minimum no 

further local minimum is observable. The red 

triangle points at the HPSO identified parameter 

value. The key results are as follows. If a 

parameter value is varied from its optimum, it 

results in an increase of SSE. If a parameter is 

allowed to change to 100% off its optimum value, 

ohmic resistance has the most significant influence 

on SSE. It is interesting to realize that time 

constants have little effect on SSE in a relative 

wide parameter range, for instance �,^=7,14? and �Y^=130,170?. It turned out that herein made 

knowledge is applicable to all identified examples 

of this kind conducted by the author. 

4.4 Gradient Method 

From the previous section it becomes obvious that 

for this particular optimization problem a gradient 

based optimizer is the right choice. As an 

advantage this would result in faster parameter 

identification, too. In [5] a gradient method for 

parameters in state space form is proposed and 

shall be explained shortly. 

 

To estimate a model that fits measured data, the 

sum of squared errors (SSE) for N data samples 

(13) is defined as objective function.  
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`��� � 12 ∙)=&a 0 &'a���?Yb
a+,  

     (13) 

Therein &a represents k-th data sample and &'a��� is a parameter set dependent estimation 

value for cell overvoltage. Cell overvoltage 

means that OCV is subtracted from the measured 

voltage according to given SOC-OCV curves. 

For computation of &'a��� discrete state space, 

given by equations (14) and (15), is needed. The 

matrices " and % are transformed to discrete 

form "c and %c that depend on sample time. 

  =d $ 1, �? � "c��� ∙  =d? $ %c��� ∙ �=d? (14) 

 &'=d, �? � � ∙  =d? $ (��� ∙ �=d?  (15) 

 

Figure 12 shows the iterative steps of discussed 

gradient method. The first main step includes 

computation of minimizing direction 	e���. 
Starting with equation (16) 

 e��� � �R�S��‖Ψ���he 0 i���‖Y  (16) 

 

a stable minimizing direction in the sense of least 

square is given by (17) wherein the symbol † 

denotes the pseudo inverse of a matrix. 

 e��� � =Ψ���h?ki���   (17) 

 

The column vector i��� (18) is a deviation 

vector of measured and estimated values. 

 

i��� �
-..
./ &=1? 0 &'=1, �?⋮&=d? 0 &'=d, �?⋮&=N? 0 &'=N, �?566

67
   (18) 

 

 

 

Figure 12: Scheme of gradient algorithm 

The elements of matrix Ψ��� (19) are partial 

gradient values for each data sample, i.e. Ψ��� ∈9l:b. 

 

Ψ��� � mn�1, �,�⋮n�1, �l�
…
…

n�d, �,�⋮n�d, �l�
…
…

n�N, �,�⋮n�N, �l�o 
     (19) 

 

For computation of Ψ��� it is necessary to partial 

differentiate equations (14) and (15) with respect 

to a certain parameter (20). Considering the 

product rule for differentiation, partial derivation 

of discrete state space leads to equation (21) and 

(22). 

 

np�d, �� � q&'�d, ��q�p  

     (20) 

 q =d $ 1?q�p � "c q =d?q�p $ "cr  =d? $ %cr �=d? 
     (21) 

 

np�d, �� � q&'=d, �?q�p � � q =d?q�p $ �r =d? $ (r�=d? 
     (22) 

 

After computing equations (14), (15), (21) and 

(22), matrix Ψ��� can be built up. Finally, 

minimizing direction e��� is received from 

equations (18) and (17). The second main step of 

the proposed gradient method is a line search along 

the computed minimizing direction. Some possible 

line search algorithms can be found in [6]. Starting 

with a parameter set from previous iteration the 
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goal of a line search is to find a step width s 

along a given minimizing direction e, for which 

the objective function gets a minimum. Having 

found a step width, the parameter set is updated 

according to equation (23) and a new iteration 

follows as long as a stopping criterion is not 

fulfilled. 

 �t � �tu, $ s ∙ e   (23) 

 

In Table 4 HPSO identified parameters are 

compared to those identified by the new gradient 

method. The parameter values are similar. It is 

remarkable that the large time constant has a 

higher value and is within the interval mentioned 

in section 4.3. The gradient method even found a 

parameter set which costs are slightly better 

compared to HPSO. For demonstration Figure 13 

shows an example of C-Rate dependent ohmic 

resistance (S � 32) identified from measured 

parameterization test data. 

Table 4: Comparison of results – HPSO vs. Gradient  

parameter HPSO Gradient �,CD [mΩ] 0,972 0,975 �,ECD [mΩ] 0,993 0,993 �,,CD [mΩ] 0,4003 0,4041 �,,ECD [mΩ] 03592 0,3723 �Y,CD [mΩ] 1,8263 2,0919 �Y,ECD [mΩ] 2,2911 2,5289 �, [s] 10 10 �Y [s] 147 169 

Costs (SSE) 8,9177e-4 8,90e-4 

 

 

Figure 13: Example for C-Rate dependent ohmic 

resistance pulse @ 25°C and 50% SOC 

5 Conclusion 
This paper introduces a battery model for 

automotive purposes. For parameterization, a 

suitable optimization method is needed for 

parameter identification. These parameters are 

extracted from measured data of a well-defined 

parameterization test. Starting with a general 

heuristic parameter identification approach, it is 

shown that a gradient method is suitable for the 

optimization problem on hand as a unique solution 

for a given model order exists. 

 

To fulfil lifetime requirements of a HV-Battery by 

simultaneously keeping drive performance it is 

indispensable to well-suit the BMS application. 

Knowledge is mandatory of how the battery is 

aging. For this reason, long term aging tests are 

done. One important point of interest is the change 

of model parameters in time. For such a study a 

parameterization test is carried out during aging 

tests regularly. The proposed gradient method is a 

very efficient approach for parameter identification 

out of these measured data. However, gaining 

knowledge about battery aging gives the 

opportunity to derive aging models. These can be 

connected to existing electro-thermal battery 

models for long term offline system simulation to 

find a suitable BMS application for a certain 

operation strategy. 
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